Skip to main content
Log in

A New Approach for Studying the Stability and Degradation Products of Ascorbic acid in Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The potentiometric titration (PT) method has been applied for the first time to investigate the stability of l-ascorbic acid (H2Asc) and to determine its degradation products in aqueous solutions. The presented electrochemical procedures can be considered to be a fast, simple and inexpensive way to control the stability of H2Asc in a regular analytical practice as well as in the chemical and pharmaceutical industries. Experimental data as well as modeling suggest that the enolic form of 2,3-diketogulonic acid predominates in a solution as the main product of dehydroascorbate degradation. Furthermore, the PT results supported by conductometric measurements and electrospray ionization mass spectrometry data enable us to propose the putative mechanism of the H2Asc decomposition. Moreover, it has been proven that among different types of investigated electrolytes (KNO3, KClO4 and KSCN), the thiocyanate ions (SCN) reveal the stabilizing effect against the degradation of H2Asc. Thus, the presence of SCN in the H2Asc solution is proposed as an alternative way for some organic solvents earlier used. Finally, a new paraffin-protection-layer procedure has been recommended for studying as well as storage of the solutions comprising components sensitive to external factors (e.g. O2, CO2) and to evaporation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Davey, W., Van Montagu, M., Inze, D., Sanmartin, M., Kanellis, A., Smirnoff, N., Benzie, I., Strain, J., Favell, D., Fletcher, J.: Plant L-ascorbic acid: chemistry, function, metabolism, bioavailability and effects of processing. J. Sci. Food Agric. 80, 825–860 (2000)

    Article  CAS  Google Scholar 

  2. Loewus, F.A.: Biosynthesis and metabolism of ascorbic acid in plants and of analogs of ascorbic acid in fungi. Phytochemistry. 52, 193–210 (1999)

    Article  CAS  Google Scholar 

  3. Hacisevki, A.: An overview of ascorbic acid biochemistry. J. Fac. Pharm. Ankara. 38, 233–255 (2009)

    CAS  Google Scholar 

  4. Du, J., Cullen, J.J., Buettner, G.R.: Ascorbic acid: Chemistry, biology and the treatment of cancer. Biochim. Biophys. Acta. 1826, 443–457 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Shen, J., Grifths, P.T., Campbell, S.J., Utinger, B., Kalberer, M., Paulson, S.E.: Ascorbate oxidation by iron, copper and reactive oxygen species: review, model development, and derivation of key rate constants. Sci. Rep. 11, 7417 (2021)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buettner, G.R., Jurkiewicz, B.A.: Catalytic metals, ascorbate, and free radicals: combinations to avoid. Radiat. Res. 145, 532–541 (1996)

    Article  CAS  PubMed  Google Scholar 

  7. Vethanayagam, J.G., Green, E.H., Rose, R.C., Bode, A.M.: Glutathione-dependent ascorbate recycling activity of rat serum albumin. Free Radic. Biol. Med. 26, 1591–1598 (1999)

    Article  CAS  PubMed  Google Scholar 

  8. Brittain, H.G.: Profiles of Drug Substances, Excipients and RelatedMethodology: Critical Compilation of pKa Values for PharmaceuticalSubstances. Elsevier, Amsterdam (2007)

    Google Scholar 

  9. Tu, Y.J., Njus, D., Schlegel, H.B.: A theoretical study of ascorbic acid oxidation and HOO/O2– radical scavenging. Org. Biomol. Chem. 15, 4417 (2017)

    Article  CAS  PubMed  Google Scholar 

  10. Van der Zee, J., Van der Broke, P.J.A.: Detrermination of the ascorbate radical concentraion in mixture of ascorbate and dehydroascorbate. Free Radic. Biol. Med. 25, 282–286 (1998)

    Article  PubMed  Google Scholar 

  11. Schweinzer, E., Goldenberg, H.: Monodehydroascorbate reductase activity in the surface membrane of leukemic cells. Eur. J. Biochem. 218, 1057–1062 (1993)

    Article  CAS  PubMed  Google Scholar 

  12. Nishikawa, Y., Kurata, T.: Interconversion between dehydro-L-ascorbic acid and L-ascorbic acid. Biosci. Biotechnol. Biochem. 64, 476–483 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. Amin, D.: Application of differential pulse polarography to the assay of ascorbic acid. Microchem J. 28, 174–179 (1983)

    Article  CAS  Google Scholar 

  14. Bujak, K.S., Eder-Trifunović, J., Kniewald, G.: Determination of l ascorbic acid in fresh and processed fruit and vegetables by differential pulse polarography. Fresenius Z. Anal. Chem. 329, 760–763 (1988)

    Article  Google Scholar 

  15. Suliborska, K., Baranowska, M., Bartoszek, A., Chrzanowski, W., Namieśnik, J.: Determination of Antioxidant Activity of Vitamin C by Voltammetric Methods. Proceedings 11:23 (2019)

  16. Abera, H., Abdisa, M., Washe, A.P.: Spectrophotometric method to the determination of ascorbic acid in M. stenopetala leaves through catalytic titration with hexavalent chromium and its validation. Int. J. Food Prop. 23, 999–1015 (2020)

    Article  CAS  Google Scholar 

  17. Cancalon, P.F.: Routine analysis of ascorbic acid in citrus juice using capillary electrophoresis. J. Aoac Int. 84, 987–992 (2001)

    Article  CAS  PubMed  Google Scholar 

  18. Pyka-Pajak, A., Dołowy, M., Parys, W., Bober, K., Janikowska, G.A.: Simple and cost-effective TLC-densitometric method for the quantitative determination of acetylsalicylic acid and ascorbic acid in combined effervescent tablets. Molecules. 23, 3115 (2018)

    Article  PubMed  PubMed Central  Google Scholar 

  19. Novakova, L., Solich, P., Solichova, D.: HPLC methods for simultaneous determination of ascorbic acid and dehydroascorbic acids. Trends Anal. Chem. 27, 942–958 (2008)

    Article  CAS  Google Scholar 

  20. Dewhirst, R.A., Fry, S.C.: The oxidation of dehydroascorbic acid and 2,3-diketogulonate by distinct reactive oxygen species. Biochem. J. 475, 3451–3470 (2018)

    Article  CAS  PubMed  Google Scholar 

  21. Bjerrum, J., Sillén, L.G., Schwarzenbach, G.K., Anderegg, G.: Stability Ëonstants of Metal-Ion Complexes, with Solubility Products of Inorganic Substances. Chemical Society, London (1958)

  22. Pilarski, B., Kaliszan, R., Wyrzykowski, D., Młodzianowski, J., Balińska, A.: General analytical procedure for determination of acidity parameters of weak acids and bases.J. Anal. Methods Chem.1–8 (2015)

  23. Kostrowicki, J., Liwo, A.: A general method for the determination of the stoichiometry of unknown species in multicomponent systems from physiochemical measurements. Comput. Chem. 11, 195–210 (1987)

    Article  CAS  Google Scholar 

  24. Kostrowicki, J., Liwo, A.: Determination of equilibrium parameters by minimization of an extend sum of squares. Talanta. 37, 645–650 (1990)

    Article  CAS  PubMed  Google Scholar 

  25. Tyler, G.S.D., Vecchio, D., Zadlo, A., Rineh, A., Sadasivam, M., Avcib, P., Huang, L., Kozinska, A., Chandranb, R., Sarna, T., Hamblin, M.R.: Thiocyanate potentiates antimicrobial photodynamic therapy: in situ generation of the sulfur trioxide radical anion by singlet oxygen. Free Radic. Biol. Med. 65, 800–810 (2013)

    Article  Google Scholar 

  26. Milligan, J.R., Aguilera, J.A., Paglinawan, R.A., Ward, J.F.: Mechanism of DNA damage by thiocyanate radicals. Int. J. Radiat. Biol. 76, 1305–1314 (2000)

    Article  CAS  PubMed  Google Scholar 

  27. Herrmann, H., Hoffmann, D., Schaefer, T., Brauer, P., Tilgner, A.: Tropospheric aqueous-phase freeradical chemistry: radical sources, spectra, reaction kinetics and prediction tools. Chemphyschem. 11, 3796–3822 (2010)

    Article  CAS  PubMed  Google Scholar 

  28. Szultka, M., Buszewska-Forajta, M., Kaliszan, R., Buszewski, B.: Determination of ascorbic acid and its degradation products by high-performance liquid chromatography-triple quadrupole mass spectrometry. Electrophoresis. 35, 585–592 (2014)

    Article  CAS  PubMed  Google Scholar 

  29. Bottegal, M., Lang, L., McCord, M., McCord, B.: Analysis of ascorbic acid based black powder substitute by high-performance liquid chromatography/electrospray ionization quadrupole time-of-flight mass spectrometry. Rapid Commun. Mass. Spectrom. 24, 1377–1386 (2010)

    Article  CAS  PubMed  Google Scholar 

  30. Lavoie, J.C., Chessex, P., Rouleau, T., Migneault, D., Comte, B.: Light-Induced Byproducts of vitamin C in Multivitamin Solutions. Clin. Chem. 50, 135–140 (2004)

    Article  CAS  PubMed  Google Scholar 

  31. Peng, L., Hua, L., Wang, W., Zhou, Q., Li, H.: On-site rapid detection of trace non-volatile inorganic explosives by stand-alone ion mobility spectrometry via acid-enhanced evaporization. Sci. Rep 4, 6631 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pavlov, J., Attygalle, A.B.: Direct detection of inorganic nitrate salts by ambient pressure helium-plasma ionization mass spectrometry. Anal. Chem. 85, 278–282 (2013)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr Marek Ślebioda, Perlan Technologies Polska Sp. z o. o. for registration of ESI/MS spectra. Special acknowledgment to Prof Adam Liwo for consulting Cerko and elaborating on the EQSOL algorithm.

Author information

Authors and Affiliations

Authors

Contributions

BP: Conceptualization, project administration, methodology, investigation, formal analysis, software, visualization, writing—original draft, writing—review & editing. DW: investigation, formal analysis, writing— original draft, writing—review & editing. JM: Software, visualization, writing—original draft, writing —review & editing.

Corresponding author

Correspondence to Bogusław Pilarski.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilarski, B., Wyrzykowski, D. & Młodzianowski, J. A New Approach for Studying the Stability and Degradation Products of Ascorbic acid in Solutions. J Solution Chem 52, 639–657 (2023). https://doi.org/10.1007/s10953-023-01260-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01260-9

Keywords

Navigation