Skip to main content
Log in

Thermodynamic Properties and Intermolecular Interacting Behaviors of Amino-Functionalized Ionic Liquid Binary Mixtures of 1-Aminopropyl-3-methylimidazolium Tetrafluoroborate with Dimethyl Sulfoxide and Acetonitrile

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Amino-functionalized ionic liquids are potential and promising media for CO2 absorption, separation, and biocatalysts due to their greenness, favorable fluidity, higher positive charge density, and rich pore structure characteristics. Two new binary mixtures, {1-aminopropyl-3-methylimidazolium tetrafluoroborate ([NH2−Pmim][BF4]) + dimethyl sulfoxide (DMSO)} and {[NH2−Pmim][BF4] + acetonitrile (ACN)}, were prepared to investigate the thermodynamic properties and internal interaction behaviors. First, the thermodynamic properties such as dynamic viscosity, density, electrical conductivity, and refractive index of the two mixture systems over the entire concentration range were measured from 288.15 to 353.15 K. By the Arrhenius equation and Vogel−Fulcher−Tamman (VFT) equation, the temperature dependence on electrical conductivity was graphically described. To investigate the internal interactions of the mixtures, the excess molar volume (VE), and viscosity deviation (Δη) were calculated and discussed by using the measured experimental data and Redlich−Kister equation fitting. Further, the structures and energies of the cation, anion, ion pairs, and solvent molecules were obtained by density functional theory (DFT) calculations to evaluate the intermolecular interactions among the different components of the mixture systems. Also the σ-profile provided the relationship between hydrogen bond donor and acceptor between IL and solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Feng, J.Z., Wang, Y., Xu, Y.T., Sun, Y.L., Tang, Y., Yan, X.B.: Ion regulation of ionic liquid electrolytes for supercapacitors. Energy Environ. Sci. 14, 2859–2882 (2021)

    Article  CAS  Google Scholar 

  2. Hallett, J.P., Welton, T.: Room-temperature ionic liquids: solvents for synthesis and catalysis. 2. Chem. Rev. 111, 3508–3576 (2011)

    Article  CAS  PubMed  Google Scholar 

  3. Jiang, K., Zhou, G.H., Fang, T.M., Liu, X.M.: Permeability of vesicles for imidazolium-based ionic liquids in aqueous solution: a molecular dynamic simulation study. Ind. Eng. Chem. Res. 60, 3174–3183 (2021)

    Article  CAS  Google Scholar 

  4. Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. B. 112, 11100–11105 (2008)

    Article  CAS  PubMed  Google Scholar 

  5. Zhang, K., Zhou, G.H., Fang, T.M., Jiang, K., Liu, X.M.: Structural reorganization of ionic liquid electrolyte by a rapid charge/discharge circle. J. Phys. Chem. Lett. 12, 2273–2278 (2021)

    Article  CAS  PubMed  Google Scholar 

  6. Murphy, L.J., McPherson, A.M., Robertson, K.N., Clyburne, J.A.C.: Ionic liquids and acid gas capture: water and oxygen as confounding factors. Chem. Commun. 48, 1227–1229 (2012)

    Article  CAS  Google Scholar 

  7. Eshetu, G.G., Armand, M., Scrosati, B., Passerini, S.: Energy storage materials synthesized from ionic liquids. Angew. Chem Int. Ed. 53, 13342–13359 (2014)

    Article  Google Scholar 

  8. Guan, W.H., Wang, C.M., Yun, X., Hu, X.B., Wang, Y., Li, H.R.: A mild and efficient oxidation of 2,3,6-trimethylphenol to trimethyl-1,4-benzoquinone in ionic liquids. Catal. Commun. 9, 1979–1981 (2008)

    Article  CAS  Google Scholar 

  9. Wang, C.M., Guan, W.H., Xie, P.H., Yun, X., Li, H.R., Hu, X.B., Wang, Y.: Effects of ionic liquids on the oxidation of 2,3,6-trimethylphenol totrimethyl-1,4-benzoquinone under atmospheric oxygen. Catal. Commun. 10, 725–727 (2009)

    Article  CAS  Google Scholar 

  10. Foo, C.K., Leo, C.Y., Aramesh, R., Aroua, M.K., Aghamohammadi, N., Shafeeyan, M.S., Shamiri, A.: Density and viscosity of aqueous mixtures of N-methyldiethanolamines (MDEA), piperazine (PZ) and ionic liquids. J. Mol. Liq 209, 596–602 (2015)

    Article  CAS  Google Scholar 

  11. Jänes, A., Eskusson, J., Thomberg, T., Romann, T., Lust, E.: Ionic liquid-1,2-dimethoxyethane mixture as electrolyte for high power density supercapacitors. J. Energy Chem. 25, 609–614 (2016)

    Article  Google Scholar 

  12. Schütter, C., Neale, A.R., Wilde, P., Goodrich, P., Hardacre, C., Passerini, S., Jacquemin, J., Balducci, A.: The use of binary mixtures of 1-butyl-1-methylpyrrolidinium bis{(trifluoromethyl)sulfonyl}imide and aliphatic nitrile solvents as electrolyte for supercapacitors. Electrochim Acta. 220, 146–155 (2016)

    Article  Google Scholar 

  13. Chaban, V.V., Fileti, E.E.: Ionic clusters vs shear viscosity in aqueous amino acid ionic liquids. J. Phys. Chem. B 119, 3824–3828 (2015)

    Article  CAS  PubMed  Google Scholar 

  14. Andreeva, N.A., Chaban, V.V.: Amino-functionalized ionic liquids as carbon dioxide scavengers. Ab initio thermodynamics for chemisorption. J. Chem. Thermodyn. 103, 1–6 (2016)

    Article  CAS  Google Scholar 

  15. Sánchez Fuentes, C.E., Guzmán-Lucero, D., Torres-Rodriguez, M., Likhanova, N.V., Bolaños, J.N., Olivares-Xometl, O., Lijanova, I.V.: CO2/N2 separation using alumina supported membranes based on new functionalized ionic liquids. Sep. Purif. Technol. 182, 59–68 (2017)

    Article  Google Scholar 

  16. Chevrot, G., Fileti, E.E., Chaban, V.V.: Protein remains stable at unusually high temperatures when solvated in aqueous mixtures of amino acid based ionic liquids. J. Mol. Model 22, 1–9 (2016)

    Article  CAS  Google Scholar 

  17. Fileti, E.E., Chaban, V.V.: The scaled-charge additive force field for amino acid based ionic liquids. Chem. Phys. Lett. 616–617, 205–211 (2014)

    Article  Google Scholar 

  18. Zhang, Y.Q., He, H.Y., Zhang, S.J., Fan, M.H.: Hydrogen-bonding interactions in pyridinium-based ionic liquids and dimethyl sulfoxide binary systems: a combined experimental and computational study. ACS Omega 3, 1823–1833 (2018)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Stoppa, A., Hunger, J., Buchner, R.: Conductivities of binary mixtures of ionic liquids with polar solvents. J. Chem. Eng. Data. 54, 472–479 (2009)

    Article  CAS  Google Scholar 

  20. Zhang, L.Q., Wang, Y., Xu, Z., Li, H.R.: Comparison of the blue shifted C−D stretching vibrations for DMSO−d6 in imidazolium-based room temperature ionic liquids and in water. J. Phys. Chem. B. 113, 5978–5984 (2009)

    Article  CAS  PubMed  Google Scholar 

  21. Geppert-Rybczyńska, M., Lehmann, J.K., Heintz, A.: Physicochemical properties of two 1-alkyl-1-methylpyrrolidinium bis[(trifluoromethyl)sulfonyl]imide ionic liquids and of binary systems of 1-butyl-1-methylpyrrolidiniumbis[(trifluoromethyl)sulfonyl]imide with methanol or acetonitrile. J. Chem. Thermodyn. 71, 171–181 (2014)

    Article  Google Scholar 

  22. Pires, J., Timperman, L., Jacquemin, J., Balducci, A., Anouti, M.: Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based proticionic liquid + propylene carbonate) binary mixture. J. Chem. Thermodyn. 59, 10–19 (2013)

    Article  CAS  Google Scholar 

  23. Zhang, Q.G., Wei, Y., Sun, S.S., Wang, C., Yang, M., Liu, Q.S., Gao, Y.A.: Study on thermodynamic properties of ionic liquid N-butyl-3-methylpyridinium bis(trifluoromethylsulfonyl)imide. J. Chem. Eng. Data. 57, 2185–2190 (2012)

    Article  CAS  Google Scholar 

  24. Ziyada, A.K., Wilfred, C.D.: Physical properties of ionic liquids consisting of 1-butyl-3-propanenitrile and 1-decyl-3-propanenitrile imidazolium–based cations: temperature dependence and influence of the anion. J. Chem. Eng. Data. 59, 1232–1239 (2014)

    Article  CAS  Google Scholar 

  25. Myers, C., Pennline, H., Luebke, D., Iiconich, J., Dixon, J.K., Maginn, E.J., Brennecke, J.F.: High temperature separation of carbon dioxide/hydrogen mixtures using facilitated supported ionic liquid membranes. J. Membr. Sci. 322, 28–31 (2008)

    Article  CAS  Google Scholar 

  26. El-Nagar, R.A., Nessim, M., Abd El-Wahab, A., Ibrahim, R., Faramawy, S.: Investigating the efficiency of newly prepared imidazolium ionic liquids for carbon dioxide removal from natural gas. J. Mol. Liq. 237, 484–489 (2017)

    Article  CAS  Google Scholar 

  27. Turbomole, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH v6.6 2014; TURBOMOLE GmbH: 2007; available from http://www.turbomole.com. Order date: 10–11–2014 (permanent licence).

  28. Zhang, Q.G., Liu, D.Y., Li, Q., Zhang, X.Y., Wei, Y.: Density, electrical conductivity, d-ynamic viscosity, excess properties, and molecular interactions of ionic liquid 1-cyan-opropyl-3-methylimidazolium tetrafluoroborate and binary system with acetonitrile. J. Chem. Eng. Data. 63, 1256–1265 (2018)

    Article  CAS  Google Scholar 

  29. Ahmad, N.A., Jumbri, K., Ramli, A., Abd Ghani, N., Ahmad, H., Kassim, M.A.: Synthesis, characterisation and antioxidant properties of ferulate-based protic ionic liquids: experimental and modelling approaches. J. Mol. Liq. 278, 309–319 (2019)

    Article  CAS  Google Scholar 

  30. Jacquemin, J., Feder-Kubis, J., Zorębski, M., Grzybowska, K., Chorążewski, M., Hensel-Bielówka, S., Zorębski, E., Paluch, M., Dzida, M.: Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media COSMO−RS structure characterization and modeling of heat capacities. Phys. Chem. Chem. Phys. 16, 3549–3557 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Kurnia, K.A., Mutalib, M.I.A., Ariwahjoedi, B.: Estimation of physicochemical properties of ionic liquids [H2N−C2mim][BF4] and [H2N−C3mim][BF4]. J. Chem. Eng. Data. 56, 2557–2562 (2011)

    Article  CAS  Google Scholar 

  32. Ciocirlan, O., Iulian, O.: Properties of pure 1-butyl-2,3-dimethylimidazolium tetrafluo-roborate ionic liquid and its binary systems with dimethyl sulfoxide and acetonitrile. J. Chem. Eng. Data. 57, 3142–3148 (2012)

    Article  CAS  Google Scholar 

  33. Aralaguppi, M.I., Jadar, C.V., Aminabhavi, T.M., Ortego, J.D., Mehrotra, S.: Density, refractive index, and speed of sound in binary systems of 2-ethoxyethanol with dimethyl sulfoxide, N,N’-dimethylformamide, N,N’-dimethylacetamide at different temperatures. J. Chem. Eng. Data. 42, 301–303 (1997)

    Article  CAS  Google Scholar 

  34. Shekaari, H., Zafaranimoattar, M.T., Mirheydari, S.N.: Density, viscosity, speed of sound, and refractive index of a ternary solution of aspirin, 1-butyl-3-methylimidazolium bromide, and acetonitrile at different temperatures T = (288.15 to 318.15) K. J. Chem. Eng. Data. 60, 1572–1583 (2015)

    Article  CAS  Google Scholar 

  35. Liu, Q.S., Ma, L.S., Wang, S.Y., Ni, Z.Y., Fu, X.Y., Wang, J., Zheng, Q.G.: Study on the properties of density, viscosity, excess molar volume, and viscosity deviation of [C2mim][NTf2], [C2mmim][NTf2], [C4mim][NTf2], and [C4mmim][NTf2] with PC binary mixtures. J. Mol. Liq. 325, 114573 (2021)

    Article  CAS  Google Scholar 

  36. Zhang, Q.G., Feng, S.H.: The thermodynamic and excess properties of [C3CNmim][CF3SO3] ionic liquids with thiocyanate and its binary systems with γ-butyrolactone. J. Bohai Univ. (Nat. Sci. Ed.) 42, 1–7 (2021)

    Google Scholar 

  37. Warmińska, D., Cichowska-Kopczyńska, I.: Thermodynamic study of binary mixtures of toluene with ionic liquids, 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide, 1-hexyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide and 1-butylpyridinium bis (trifluoromethylsulfonyl) imide. J. Mol. Liq. 304, 112754 (2020)

    Article  Google Scholar 

  38. Królikowska, M., Grzeszyk, K., Skonieczny, M.: Thermodynamic characterization of 1-ethyl-1-methyl-pyrrolidinium dimethylphosphate, [C1C2PYR][DMP], or 1-hydroxyethyl-1-methylpyrrolidinium dimethylphosphate, [C1C2OHPYR][DMP](1) + ethanol (2) binary systems. Fluid Phase Equilib. 547, 113175 (2021)

    Article  Google Scholar 

  39. Wang, Y.L., Li, B., Sarman, S., Mocci, F., Lu, Z.Y., Yuan, J.Y., Laaksonen, A., Fayer, M.D.: Microstructural and dynamical heterogeneities in ionic liquids. Chem. Rev. 120, 5798–5877 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chaudhary, N., Nain, A.K.: Densities, speeds of sound, viscosities, refractive indices, excess and partial molar properties of binary mixtures of 1-butyl-3-methylimidazolium tetrafluoroborate with formamide at temperatures from 293.15 to 318.15 K. J. Mol. Liq. 305, 112816 (2020). https://doi.org/10.1016/j.molliq.2020.112816

    Article  CAS  Google Scholar 

  41. Zhang, Q.G., Xu, T.T., Zhang, X.Y., Yang, H.G., Zhang, W.B.: The thermodynamic and excess properties of trialkyl-substituted imidazolium-based ionic liquids with thiocyanate and its binary systems with acetonitrile. J. Chem. Eng. Data. 63, 1408–1418 (2018)

    Article  CAS  Google Scholar 

  42. Zhang, Q.G., Cai, S.Y., Zhang, W.B., Lan, Y.L., Zhang, X.Y.: Density, viscosity, conductivity, refractive index and interaction study of binary mixtures of the ionic liquid 1-ethyl-3-methylimidazolium acetate with methyldiethanolamine. J. Mol. Liq. 233, 471–478 (2017)

    Article  CAS  Google Scholar 

  43. Zhang, Q.G., Yang, H.G., Lang, X.S., Wei, Y.: 1-Ethyl-2,3-dimethylimidazolium tetrafluoroborate ionic liquid mixture as electrolyte for high-voltage supercapacitors. Ionics 25, 231–239 (2019)

    Article  CAS  Google Scholar 

  44. Zhang, Y.F., Zhang, X.Y., Lang, X.S., Zhang, Q.G.: Study on the themodynamic properties and electrochemical performance of mixture electrolyte for supercapacitor composed of ionic liquid [BMIM][BF4] and SBPBF4/PC. Ionics 27, 4003–4011 (2021)

    Article  CAS  Google Scholar 

  45. Nasrabadi, A.T., Ganesan, V.: Structure and transport properties of lithium-doped aprotic and protic ionic liquid electrolytes: Insights from molecular dynamics simulations. J. Phys. Chem. B. 123, 5588–5600 (2019)

    Article  CAS  PubMed  Google Scholar 

  46. Panda, S., Ray, S., Losetty, V., Gardas, R.L.: Synthesis and thermophysical properties of pyrrolidonium based ionic liquids and their binary mixtures with water and DMSO at T = (293.15 to 333.15) K. J. Mol. Liq. 224, 882–892 (2016)

    Article  CAS  Google Scholar 

  47. Zhang, Q.G., Liu, D.Y., Li, Q., Zhang, X.Y., Wei, Y., Lang, X.S.: Thermodynamic properties, excess properties, and molecular interactions of ionic liquids 1-cyanopropyl-3-methyl-imidazolium bis (fluorosulfonyl) imide/trifluoromethanesulfonate and binary systems containing acetonitrile. J. Mol. Liq. 268, 770–780 (2018)

    Article  CAS  Google Scholar 

  48. Zhang, D., Li, B., Hong, M., Kong, Y.X., Tong, J., Xu, W.G.: Synthesis and characterization of physicochemical properties of new ether-functionalized amino acid ionic liquids. J. Mol. Liq. 304, 112718 (2020)

    Article  CAS  Google Scholar 

  49. Fu, Y.L., Cui, X.B., Zhang, Y., Feng, T.Y., He, J., Zhang, X.M., Bai, X., Cheng, Q.L.: Measurement and correlation of the electrical conductivity of the ionic liquid [BMIM][TFSI] in binary organic solvents. J. Chem. Eng. Data. 63, 1180–1189 (2018)

    Article  CAS  Google Scholar 

  50. Anouti, M., Vigeant, A., Jacquemin, J., Brigouleix, C., Lemordant, D.: Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents. J. Chem. Thermodyn. 42, 834–845 (2010)

    Article  CAS  Google Scholar 

  51. Chen, H., Wang, Z.H., Zhao, P., Xu, X.Z., Gong, S.D., Yu, Z.W., Zhou, Y.: Comparative study of the hydrogen bonding properties between bis (fluorosulfonyl) imide/bis (trifluoromethyl) sulfonylimide-based ether-functionalized ionic liquids and methanol. J. Mol. Liq. 328, 115333 (2021)

    Article  CAS  Google Scholar 

  52. Chaban, V.V., Andreeva, N.A.: Amination of five families of room-temperature ionic liquids: computational thermodynamics and vibrational spectroscopy. J. Chem. Eng. Data. 61, 1917–1923 (2016)

    Article  CAS  Google Scholar 

  53. Chen, H., Wang, Z.H., Xu, X.Z., Gong, S.D., Zhou, Y.: The molecular behavior of pyridinium/imidazolium based ionic liquids and toluene binary systems. Phys. Chem. Chem. Phys. 23, 13300–13309 (2021)

    Article  CAS  PubMed  Google Scholar 

  54. Liu, X., Li, S., Wang, D., Ma, Y., Liu, X., Ning, M.: Theoretical study on the structure and cation-anion interaction of triethylammonium chloroaluminate ionic liquid. Comput. Theor. Chem. 1073, 67–74 (2015)

    Article  CAS  Google Scholar 

  55. Hizaddin, H.F., Anantharaj, R., Hashim, M.A.: A quantum chemical study on the molecular interaction between pyrrole and ionic liquids. J. Mol. Liq. 194, 20–29 (2014)

    Article  CAS  Google Scholar 

  56. Kurnia, K.A., Matheswaran, P., How, C.J., Noh, M.H., Kusumawati, Y.: A comprehensive study on the impact of chemical structures of ionic liquids on the solubility of ethane. New J. Chem. 44, 11155–11163 (2020)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhenjiang Science and Technology Innovation Fund (GY2019022) and Jiangsu Universities Blue Project 2019 (Outstanding Young Teacher), the Project of Science and Technology Department of Liaoning Province of China (2019-ZD-0509), the Project of Education Department of Liaoning Province of China (LJKZ1010, LQ2019004), the Key Research and Development Plan of Liaoning Science and Technology Department [2020JH2/10200007].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinyuan Zhang or Qingguo Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 178 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Zhou, C., Xing, Z. et al. Thermodynamic Properties and Intermolecular Interacting Behaviors of Amino-Functionalized Ionic Liquid Binary Mixtures of 1-Aminopropyl-3-methylimidazolium Tetrafluoroborate with Dimethyl Sulfoxide and Acetonitrile. J Solution Chem 52, 467–486 (2023). https://doi.org/10.1007/s10953-023-01258-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01258-3

Keywords

Navigation