Skip to main content
Log in

Molecular Speciation of Isopolyoxomolybdates and Isopolyoxotungstates with Silicic Acid in Aqueous Solution Using ESI–MS

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

There have been few reports on the characterization of molybdate and tungstate species in pure water using ESI–MS. Hexameric molybdate anions were reported to be unstable in neutral solution, but to exist in acidic solutions. The monomolybdate anion was found to be stable in pure aqueous solution in the form of [HMoO4]. Monomeric tungstate was observed as [WO4]2− and [HWO4] in acidic solution. At low pH, [Mo4O13]2−, [HMo4O13] and [HW3O10] were the main molecular species observed. At high pH, hydrolyzed [HMoO4] and [HWO4] were detected by mass spectometer. When silicic acid was added to the molybdate solution, [SiMo12O40]4− and [HSiMo12O40]3− were formed from the tetrameric molybdate anion. In addition, monomeric, trimeric, hexameric, heptameric, undecameric and dodecameric polyoxomolybdates were detected in the supernatant solution by ESI mass spectrometry. When silicic acid was added to a tungstate solution, [HSiW12O40]3−, composed of the trimeric tungstate anion was detected. In addition, two pentameric polyoxotungstates as well as tetrameric, hexameric and heptameric polyoxotungstates were present in the supernatant solution, while no monomer or dimer was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lunk, H.J., Hartl, H.: The fascinating polyoxometalates. ChemTexts 7, 26 (2021). https://doi.org/10.1007/s40828-021-00145-y

    Article  CAS  Google Scholar 

  2. Pope, M.T., Sadakane, M., Kortz, U.: Celebrating polyoxometalate chemistry. Eur. J. Inorg. Chem. 2019, 340–342 (2019). https://doi.org/10.1002/ejic.201801543

    Article  CAS  Google Scholar 

  3. Pope, M.T.: Introduction. In: Pope, M.T. (ed.) Heteropoly and Isopoly Oxometalates. Springer-Verlag, Berlin (1983). https://doi.org/10.1007/978-3-662-12004-0_1

    Chapter  Google Scholar 

  4. Zhang, Q., Tan, Y., Yang, C., Han, Y.: MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethyl ether to dimethoxymethane. Special issue polyoxometalates in catalysis, Edited by Craig Hill. J. Mol. Catal. A:Chem. 262, 2–242 (2007). https://doi.org/10.1016/j.molcata.2006.08.044

    Article  CAS  Google Scholar 

  5. Dissem, N., Artetxe, B., Felices, L.S., Beobide, G., Castillo, O., Ruiz-Bilbao, E., Lezama, L.: Single-crystal-to-single-crystal cluster transformation in a microporous molybdoarsenate(V)-metalorganic framework. Inorg. Chem. 60, 14913–14923 (2021). https://doi.org/10.1021/acs.inorgchem.1c02276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dolbecq, A., Dumas, E., Mayer, C.R., Mialane, P.: Hybrid organic-inorganic polyoxometalate compounds: From structural diversity to applications. Chem. Rev. 110, 6009–6048 (2010). https://doi.org/10.1021/cr1000578

    Article  CAS  PubMed  Google Scholar 

  7. Konishi, T., Kodani, K., Hasegawa, T., Ogo, S., Guo, S.-X., Boas, J.F., Zhang, J., Bond, A.M., Ueda, T.: Impact of the lithium cation on the voltammetry and spectroscopy of [XVM11O40]n− (X = P, As (n = 4), S (n = 3); M = Mo, W): Influence of charge and addenda and hetero atoms. Inorg. Chem. 59, 10522–10531 (2020). https://doi.org/10.1021/acs.inorgchem.0c00876

    Article  CAS  PubMed  Google Scholar 

  8. Ueda, T.: Electrochemistry of polyoxometalates from fundamental aspects to applications. Chem. Electro. Chem. 5, 823–838 (2018). https://doi.org/10.1002/celc.201701170

    Article  CAS  Google Scholar 

  9. Ueda, T., Kodani, K., Ota, H., Shiro, M., Guo, S.X., Boas, J.F., Bond, A.M.: Voltammetric and spectroscopic studies of α- and β-[PW12O40]3− polyoxometalates in neutral and acidic media: Structural characterization as their [(n-Bu4N)3][PW12O40] salts. Inorg. Chem. 56, 3990–4001 (2020). https://doi.org/10.1021/acs.inorgchem.6b03046

    Article  CAS  Google Scholar 

  10. Ueda, T., Ohnishi, M., Kawamoto, D., Guo, S.X., Boas, J.F., Bond, A.M.: Voltammetric behavior of 1- and 4-[S2VVW17O62]5− in acidified acetonitrile. Dalton Trans. 44, 11660–11668 (2015). https://doi.org/10.1039/c5dt01530h

    Article  CAS  PubMed  Google Scholar 

  11. Ueda, T., Nambu, J.I., Lu, J., Guo, S.X., Li, Q., Boas, J.F., Martin, L.L., Bond, A.M.: Structurally characterised vanadium(V)-substituted Keggin-type heteropolysulfates [SVM11O40]3− (M = Mo, W): voltammetric and spectroscopic studies related to the V(V)/ V(IV) redox couple. Dalton Trans. 43, 5462–5473 (2014). https://doi.org/10.1039/c3dt53161a

    Article  CAS  PubMed  Google Scholar 

  12. Nambu, J.I., Ueda, T., Guo, S.X., Boas, J.F., Bond, A.M.: Detailed voltammetric and EPR study of protonation reactions accompanying the one-electron reduction of Keggin-type polyoxometalates, [XVVM11O40]4− (X = P, As; M = Mo, W) in acetonitrile. Dalton Trans. 39, 7364–7373 (2010). https://doi.org/10.1039/c003248d

    Article  CAS  PubMed  Google Scholar 

  13. Daraie, M., Lotfian, N., Heravi, M.M., Mirzaei, M.: Chemoselective synthesis of drug-like pyrrolo[2,3,4-kl] acridin-1-one using polyoxometalate@lanthanoid catalyst. React. Kinet. Mech. Catal. 129(1), 391–401 (2020). https://doi.org/10.1007/s11144-019-01709-3

    Article  CAS  Google Scholar 

  14. Ghanbarian, M., Beheshtiha, S.Y.S., Heravi, M.M., Mirzaei, M., Zadsirjan, V., Lotfian, N.: A Nano-sized Nd–Ag@polyoxometalate catalyst for catalyzing the multicomponent Hantzsch and Biginelli reactions. J. Clust. Sci. 31(6), 1295–1306 (2020)

    Article  CAS  Google Scholar 

  15. Heravi, M.M., Hosseinnejad, T., Tamimi, M., Zadsirjan, V., Mirzaei, M.: 12-Tungstoboric acid (H5BW12O40) as an efficient Lewis acid catalyst for the synthesis of chromenopyrimidine-2,5-diones andthioxochromenopyrimidin-5-ones: Joint experimental and computational study. J. Mol. Struct. 1199, 126953 (2020). https://doi.org/10.1016/j.molstruc.2019.127598

    Article  CAS  Google Scholar 

  16. Lotfian, N., Heravi, M.M., Mirzaei, M., Daraie, M.: Investigation of the uncommon basic properties of [Ln(W5O18)2]9- (Ln . La, Ce, Nd, Gd, Tb) by changing central lanthanoids in the syntheses of pyrazolopyranopyrimidines. J. Mol. Struct. 1205, 127598 (2020). https://doi.org/10.1016/j.molstruc.2019.126953

    Article  CAS  Google Scholar 

  17. Heravi, M.M., Momeni, T., Mirzaei, M., Zadsirjan, V., Tahmasebi, M.: An amino acid@isopolyoxometalate nanoparticles catalyst containing aspartic acid and octamolybdate for the synthesis of functionalized spirochromenes. Inorg. Nano-Met. Chem. 51(6), 896–909 (2021). https://doi.org/10.1080/24701556.2020.1813172

    Article  CAS  Google Scholar 

  18. Daraie, M., Mirzaei, M., Bazargan, M., Amiri, V.S., Sanati, B.A., Heravi, M.M.: Lanthanoid-containing polyoxometalate nanocatalysts in the synthesis of bioactive isatin-based compounds. Sci. Rep. 12(1), 12004 (2022). https://doi.org/10.1038/s41598-022-16384-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Yekke-Ghasemi, Z., Heravi, M.M., Malmir, M., Jahani, G., Bisafar, M.B., Mirzaei, M.: Fabrication of heterogeneous-based lacunary polyoxometalates as efficient catalysts for the multicomponent and clean synthesis of pyrazolopyranopyrimidines. Inorg. Chem. Commun. 140, 109456 (2022). https://doi.org/10.1016/j.inoche.2022.109456

    Article  CAS  Google Scholar 

  20. Hosseinzadeh-Baghan, S., Mirzaei, M., Eshtiagh-Hosseini, H., Zadsirjan, V., Heravi, M.M., Mague, J.T.: An inorganic–organic hybrid material based on a Keggin-type polyoxometalate@Dysprosium as an effective and green catalyst in the synthesis of 2-amino-4H-chromenes via multicomponent reactions. Appl. Organomet. Chem. 34(9), e5793 (2020). https://doi.org/10.1002/aoc.5793

    Article  CAS  Google Scholar 

  21. Malmir, M., Heravi, M.M., Yekke-Ghasemi, Z., Mirzaei, M.: Incorporating heterogeneous lacunary Keggin anions as efficient catalysts for solvent-free cyanosilylation of aldehydes and ketones. Sci. Rep. 12(1), 11573 (2022). https://doi.org/10.1038/s41598-022-15831-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wadelin, C., Mellon, M.G.: Extraction of heteropoly acids. Anal. Chem. 25, 1668 (1953)

    Article  CAS  Google Scholar 

  23. Nagul, E.A.: The molybdenum blue reaction for the determination of orthophosphate revisited: opening the black box. Anal. Chim. Acta 890, 60–82 (2015). https://doi.org/10.1016/j.aca.2015.07.030

    Article  CAS  PubMed  Google Scholar 

  24. Bajuk-Bogdanović, D., Uskoković-Marković, S., Hercigonja, R., Popa, A., Holclajtner-Antunović, I.: Study of the decomposition pathway of 12-molybdophosphoric acid in aqueous solutions by micro Raman spectroscopy. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 153, 152–159 (2016). https://doi.org/10.1016/j.saa.2015.08.029

    Article  CAS  Google Scholar 

  25. Vila-Nadal, L., Wilson, E.F., Miras, H.N., RodrÌguez-Fortea, A., Cronin, L., Poblet, J.M.: Combined theoretical and mass spectrometry study of the formation-fragmentation of small polyoxomolybdates. Inorg. Chem. 50, 7811–7819 (2011). https://doi.org/10.1021/ic200969h

    Article  CAS  PubMed  Google Scholar 

  26. Takahashi, M., Abe, Y., Tanaka, M.: Elucidation of molybdosilicate complexes in the molybdate yellow method by ESI-MS. Talanta 131, 301–308 (2015). https://doi.org/10.1016/j.talanta.2014.07.079

    Article  CAS  PubMed  Google Scholar 

  27. Takahashi, M., Tanaka, M.: Analysis of complex-formation reaction in molybdenum blue method by ESI-MS. Bunseki Kagaku 61, 1049–1054 (2012). https://doi.org/10.2116/bunsekikagaku.61.1049

    Article  CAS  Google Scholar 

  28. Nakamura, I., Miras, H.N., Fujiwara, A., Fujibayashi, M., Song, Y-F., Cronin, L., Tsunashima,R.: Investigating the formation of “Molybdenum blues” with gel electrophoresis and mass Spectrometry. J. Am. Chem. Soc., 137, 20, 6524–6530 (2015) https://doi.org/10.1021/ja512758j

  29. Bonchio, M., Bortolini, O., Conte, V., Sartorel, A.: Electrospray behavior of lacunary Keggin-Type polyoxotungstates [XW11O39]p− (X = Si, P): Mass spectrometric evidence for a concentration-dependent incorporation of an MOn+ (M = WVI, MoVI, VV) unit into the polyoxometalate vacancy. Europ. J. Inorg. Chem. (2003). https://doi.org/10.1002/ejic.200390096

    Article  Google Scholar 

  30. Gun, J., Modestov, A., Lev, O., Poli, R.: Reduction of [(C5Me5)2Mo2O5] and [(C5Me5)2Mo2O4] in methanol/water/trifluoroacetate solutions investigated by combined on-line Electrochemistry/Electrospray-Ionization Mass Spectrometry. Eur. J. Inorg. Chem. (2003). https://doi.org/10.1002/ejic.200200627

    Article  Google Scholar 

  31. Ito, T., Yamase, T.: Investigation of intermediates involved in the photochemical formation of Mo-Blue nanoring by Capillary electrophoresis-Mass Spectrometry. Eur. J. Inorg. Chem. (2009). https://doi.org/10.1002/ejic.200900600

    Article  Google Scholar 

  32. Katano, H., Ueda, T.: Spectrophotometric determination of phosphate anion based on the formation of Molybdophosphate in ethylene glycol-water mixed Solution. Anal. Sci. 27, 1043–1047 (2011). https://doi.org/10.2116/analsci.27.1043

    Article  CAS  PubMed  Google Scholar 

  33. Osakai, T., Himeno, S., Saito, A.: Electrochemical formation of 11-molybdophosphate anion at the nitrobenzene/water interface and its applicability to the determination of orthophosphate ion. Bull. Chem. Soc. Jpn. 64, 1313–1317 (1991)

    Article  CAS  Google Scholar 

  34. Urabe、, T., Tsugoshi、, T.。, Tanaka、, M.: Electrospray ionization mass spectrometry investigation of the blocking effect of sulfate on the formation of aluminum tridecamer. J. Mol. Liq. 143, 70–74 (2008). https://doi.org/10.1016/j.molliq.2008.06.019

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was partly supported by THE TOYO SUISAN FOUNDATION.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by MT, YO, KI and RU and discussed by KT, MN, YVS, KT and MT. The first draft of the manuscript was written by TM and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Miho Tanaka.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osuka, Y., Ii, K., Tsuchiya, K. et al. Molecular Speciation of Isopolyoxomolybdates and Isopolyoxotungstates with Silicic Acid in Aqueous Solution Using ESI–MS. J Solution Chem 53, 642–654 (2024). https://doi.org/10.1007/s10953-023-01255-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-023-01255-6

Keywords

Navigation