Skip to main content
Log in

Complexation of Zn(II) and Cu(II) by Perfluorinated β-Diketones: Theoretical and Experimental Approaches and Potential Use as Copper-Eliminating Agents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Aqueous chelation of six perfluorinated β-diketones with copper(II) and zinc(II) was studied under various conditions. Complexation with thenoyl-trifluoroacetone, furoyl-trifluoroacetone, selenoyl-trifluroacetone, phenyl-trifluoroacetone, para-chloro-phenyl-trifluoroacetone, and para-fluoro-phenyl-trifluoroacetone have been investigated spectrophotometrically and theoretically to understand the mechanism of complexation with bivalent copper and zinc ions. The spectral dataset has been processed using non-linear regression analysis and methods of linear algebra and the structures of the formed complexes have been established. By variation of pH, concentration of side ions and ionic strength, the mechanism of the chelation was investigated and detailed. Interaction with Zn(II) and Cu(II) leads to the formation of monocomplex species with various compositions. Conditional and some “true” stability constants were determined at various conditions. Studied ligands show an unusual chelation behavior: in the pH region 1–5 interaction with rare earth metals, Zn2+ and Cu2+ were detected, but complexation with Pb2+ and Cd2+ has not been observed. Thus, “anti-selectivity” toward some transition metals was shown under specific conditions. Also, all ligands demonstrate significant selectivity to Cu(II). Spectral and thermodynamic characteristics have been estimated using ab initio computations.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Reid, J.C., Calvin, M.: Some new β-diketones containing the trifluoromethyl group. J. Am. Chem. Soc. 72, 2948–2952 (1950)

    CAS  Google Scholar 

  2. James, R.A., Bryan, W.P.: The Use of thenoyltrifluoroacetone in ion exchange separations. J. Am. Chem. Soc. 76, 1982–1984 (1954)

    CAS  Google Scholar 

  3. Day, R.A., Jr., Powers, R.M.: Extraction of uranyl ion from some aqueous salt solutions with 2-thenoyltrifluoroacetone. J. Am. Chem. Soc. 76, 3895–3897 (1954)

    CAS  Google Scholar 

  4. Berg, E.W., McIntyre, R.T.: Paper chromatographic separation of metal 2-thenoyltrifluoroacetone chelates. Anal. Chem. 27, 195–219 (1955)

    CAS  Google Scholar 

  5. Huffman, E.H., Iddings, G.M., Osborne, R.N., Shalimoff, G.V.: Extraction of zirconium and hafnium with various fluorinated β-diketones. J. Am. Chem. Soc. 77, 881–883 (1955)

    CAS  Google Scholar 

  6. Bolomey, R.A., Wish, L.: Thenoyltrifluoroacetone as a complexing agent for the isolation and purification of carrier-free radioberyllium. J. Am. Chem. Soc. 72, 4483–4486 (1950)

    CAS  Google Scholar 

  7. Moore, F.L.: Separation and determination of neptunium by liquid-liquid extraction. Anal. Chem. 29, 941–944 (1957)

    CAS  Google Scholar 

  8. Buchanan, R.F., Hughes, J.P., Hines, J.J., Bloomquist, C.A.A.: The determination of nitrogen, americium, neptunium, and uranium in p.p.m. quantities in pure plutonium. Talanta 6, 173–184 (1960)

    CAS  Google Scholar 

  9. Nakamura, S., Suzuki, N.: A new trend in the synergistic extraction of rare-earth(III) complexes with various β-diketones and 1,10-phenanthroline. Polyhedron 11, 1805–1813 (1986)

    Google Scholar 

  10. Hasegawa, Y., Tamaki, S., Yajima, H., Hashimoto, B., Yaita, T.: Selective separation of samarium(III) by synergistic extraction with β-diketone and methylphenylphenanthroline carboxamide. Talanta 85, 1543–1548 (2011)

    CAS  PubMed  Google Scholar 

  11. Nehra, K., Dalal, Anuj., Hooda, Anjli., Bhagwan, Shri., Saini, R. K., Mari, B., Kumar, S., Singh, F.: Lanthanides β-diketonate complexes as energy-efficient emissive materials: A review. J. Mol. Struct. 1249, 131531 (2022)

  12. Varaksina, E.A., Taydakov, I.V., Ambrozevich, S.A., Selyukov, A.S., Lyssenko, K.A., Jesus, L.T., Freire, R.O.: Influence of fluorinated chain length on luminescent properties of Eu3+ β-diketonate complexes. J. Luminescence 196, 161–168 (2018)

    CAS  Google Scholar 

  13. Zhan, W., Guo, Y., Gong, X., Guo, Y., Wang, Y., Lu, G.: Current status and perspectives of rare earth catalytic materials and catalysis. Chinese J. Catal. 35, 1238–1250 (2014)

    CAS  Google Scholar 

  14. Qin, X., Liu, X., Huang, W., Bettinelli, M., Liu, X.: Lanthanide activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488–4527 (2017)

    CAS  PubMed  Google Scholar 

  15. Balaram, V.: Rare earth elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 10, 1285–1303 (2019)

    CAS  Google Scholar 

  16. Lutoshkin, M.A., Petrov, A.I., Malyar, Y.N., Kazachenko, A.S.: Interaction of rare-earth metals and some perfluorinated β-diketones. Inorg. Chem. 60, 3291–3304 (2021)

    CAS  PubMed  Google Scholar 

  17. Lutoshkin, M.A., Taydakov, I.V.: Selenoyl-trifluoroacetone: Synthesis, properties, and complexation ability towards trivalent rare-earth ions. Polyhedron 207, 115383 (2021)

    CAS  Google Scholar 

  18. Lutoshkin, M.A., Malyar, Y.N.: Study of mono-fluorinated derivative of benzoyltrifluoroacetone. J. Solution Chem. 50, 1189–1203 (2021)

    CAS  Google Scholar 

  19. Lutoshkin, M.A., Malyar, Y.N.: Determination of acid–base and complexing parameters of chlorine-substituted trifluorobenzoylacetone in water medium. J. Chem. Eng. Data 65, 3696–3705 (2020)

    CAS  Google Scholar 

  20. Lutoshkin, M.A., Taydakov, I.V., Kuznetsov, B.N.: Behavior of some perfluorinated analogs of thenoyltrifluoroacetone in aqueous solution. J. Chem. Eng. Data Data 64, 2593–2600 (2019)

    CAS  Google Scholar 

  21. Bandara, D.H.M., Field, K.D., Emmert, M.H.: Rare earth recovery from end-of-life motors employing green chemistry design principles. Green Chem. 18, 753–759 (2016)

    CAS  Google Scholar 

  22. Maeda, M., Ito, T., Hori, M., Johansson, G.: the structure of zinc chloride complexes in aqueous solution. Z. Naturforschung A 51, 63–70 (1996)

    CAS  Google Scholar 

  23. Grebenyuk, S.A., Perepichka, I.F., Popov, A.F.: Evaluation of the parameters of 1:1 charge transfer complexes from spectrophotometric data by non-linear numerical method. Spectrochim. Acta, Part A 58, 2913–2923 (2002)

    Google Scholar 

  24. Petrov, A.I., Dergachev, V.D.: Equivalency of kinetic schemes: causes and an analysis of some model fitting algorithms. Int. J. Chem. Kin. 49, 494–505 (2017)

    CAS  Google Scholar 

  25. http://www.scilab.org/ (accessed February 1, 2022)

  26. Wallace, R.M., Katz, S.M.: A Method for the determination of rank in the analysis of absorption spectra of multicomponent systems. J. Phys. Chem. 68, 3890–3892 (1964)

    CAS  Google Scholar 

  27. https://www.gnu.org/software/octave/index (accessed February 1, 2022)

  28. Schmidt, M.W., Baldridge, K.K., Boatz, J.A., Elbert, S.T., Gordon, M.S., Jensen, J.H., Koseki, S., Matsunaga, N., Nguyen, K.A., Su, S., Windus, T.L., Dupuis, M., Montgomery, J.A.: General atomic and molecular electronic structure system. Comput. Chem. 14, 1347–1363 (1993)

    CAS  Google Scholar 

  29. Adamo, C., Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110, 6158–6170 (1999)

    CAS  Google Scholar 

  30. Grimme, S., Antony, J., Ehrlich, S., Krieg, H.: A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010)

    PubMed  Google Scholar 

  31. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90, 1007–1023 (1989)

    CAS  Google Scholar 

  32. Bryantsev, V.S., Diallo, M.S., Goddard, W.A.: Calculation of solvation free energies of charged solutes using mixed cluster/continuum models. J. Phys. Chem. B 112, 9709–9719 (2008)

    CAS  PubMed  Google Scholar 

  33. Vukovic, S., Hay, B.P., Bryantsev, V.S.: Predicting stability constants for uranyl complexes using density functional theory. Theor. Inorg. Chem. 54, 3995–4001 (2015)

    CAS  Google Scholar 

  34. Lutoshkin, M.A., Kazachenko, A.S.: Assessment of various density functionals and solvation models to describe acid-base, spectral and complexing properties of thiobarbituric and barbituric acids in aqueous solution. J. Comput. Mater. Sci. Eng. 17, 851–863 (2017)

    CAS  Google Scholar 

  35. Marenich, A.V., Cramer, C.J., Truhlar, D.G.: Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J. Phys. Chem. B 113, 6378–6396 (2009)

    CAS  PubMed  Google Scholar 

  36. Laurent, A.D., Jacquemin, D.: TD-DFT benchmarks: A review. Int. J. Quantum Chem. 113, 2019–2039 (2013)

    CAS  Google Scholar 

  37. Hartmann, M., Clark, T., van Eldik, R.: Hydration and water exchange of zinc(II) ions. Application of density functional theory. J. Am. Chem. Soc. 119, 7843–7850 (1997)

  38. Tedesco, P.H., De Rumi, V.B.: Polarographic and solubility study on zinc-acetate and zinc-propionate complexes. J. Inorg. Nucl. Chem. 33, 3833–3838 (1971)

    CAS  Google Scholar 

  39. Motoo, Y., Kazuo, Y., Hitoshi, O.: Stability of complexes of several carboxylic acids formed with bivalent metals. Bull. Chem. Soc. Jpn. 33, 1067–1070 (1960)

    Google Scholar 

  40. Hanzawa, Y., Hiroishi, D., Matsuura, C., Ishigure, K., Nagao, M., Haginuma, M.: Hydrolysis of zinc ion and solubility of zinc oxide in high-temperature aqueous systems. Nucl. Sci. Eng. 127, 292–299 (1997)

    CAS  Google Scholar 

  41. Van Uitert, L.G.: Chelate compound stability constant calculations on metal diketonate complexes. Polyhedron 2, 285–289 (1983)

    Google Scholar 

  42. D’Angelo, P., Zitolo, A., Migliorati, V., Chillemi, G., Duvail, M., Vitorge, P., Abadie, S., Spezia, R.: Revised ionic radii of lanthanoid(III) ions in aqueous solution. Inorg. Chem. 50, 4572–4579 (2011)

    PubMed  Google Scholar 

  43. Yizhak, M.: Ionic radii in aqueous solutions. Chem. Rev. 88, 1475–1498 (1988)

    Google Scholar 

  44. Salmon, P.S., Neilson, G.W., Enderby, J.E.: The structure of Cu2+ aqueous solutions. J. Phys. C: Solid State Phys. 21, 1335 (1988)

    CAS  Google Scholar 

  45. Salmon, P. S.; Neilson, G. W.: (1989) The coordination of Cu(II) in a concentrated copper nitrate solution. J. Phys.: Condens. Matter 1, 5291

  46. Ramette, R.W., Fan, G.: Copper(II) chloride complex equilibrium constants. Inorg. Chem. 22, 3323–3326 (1983)

    CAS  Google Scholar 

  47. Kochi, J.K., Subramanian, R.V.: Kinetic determination of the monomer-dimer equilibrium for cupric acetate in acetic acid solutions. Inorg. Chem. 4, 1527–1533 (1965)

    CAS  Google Scholar 

  48. Nakasuka, N., Azuma, K., Tanaka, M.: Complex formation of copper(II) acetate with pyridine bases in anhydrous acetic acid. Inorganica Chim. Acta 238, 83–87 (1995)

    CAS  Google Scholar 

  49. Fan, J.: Determination of stability constants of copper(II) complex of glycine in water + alcohol mixed solvents with ion selective electrode technique. Talanta 42, 317–321 (1995)

    CAS  PubMed  Google Scholar 

  50. Nobuyuki, T., Kiyoko, K.: The formation constants of metal acetate complexes. II. Polarographic determination of the formation constants of acetatocopper(II), acetatolead(II) and acetatozinc(II) complexes. Bull. Chem. Soc. Jpn. 33, 417–423 (1960)

    Google Scholar 

  51. Moffett, J.W., Zika, R.G.: Solvent extraction of copper acetylacetonate in studies of copper(II) speciation in seawater. Mar. Chem. 21, 301–313 (1987)

    CAS  Google Scholar 

  52. Lutoshkin, M.A., Petrov, A.I., Kazachenko, A.S., Kuznetsov, B.N., Levdansky, V.A.: Complexation of rare earth metals by quercetin and quercetin-5’-sulfonic acid in acidic aqueous solution. Main Group Chem. 17, 17–25 (2018)

    CAS  Google Scholar 

  53. Lutoshkin, M.A., Petrov, A.I., Kuznetsov, B.N., Kazachenko, A.S.: Aqueous complexation of morin and its sulfonate derivative with lanthanum(III) and trivalent lanthanides. J. Solution Chem. 48, 676–688 (2019)

    CAS  Google Scholar 

  54. Lutoshkin, M.A., Kuznetsov, B.N., Levdansky, V.A.: The interaction of morin and morin-5’-sulfonic acid with lead(II): Study of the 1:1 complex formation process in aqueous solution. Main Group Met. Chem. 42, 67–72 (2019)

    CAS  Google Scholar 

  55. Rozina, T.P., Ignatova, T.M., Solov’eva, O.V.: Wilson-Konovalov disease in 3 sisters: a radical change in prognosis if timely diagnosed. Ter Arkh 86, 80–84 (2014)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was conducted within the framework of the budget project 0287-2021-0012 for Institute of Chemistry and Chemical Technology SB RAS using the equipment of Krasnoyarsk Regional Research Equipment Centre of SB RAS. Synthetic part of this work was financially supported by the Russian Science Foundation (Project №19-13-00272). Numerical computations were performed on the MVS-1000M cluster of the Institute of computational modeling SB RAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxim A. Lutoshkin.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest with respect to the content, authorship, and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 854 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lutoshkin, M.A., Taydakov, I.V. Complexation of Zn(II) and Cu(II) by Perfluorinated β-Diketones: Theoretical and Experimental Approaches and Potential Use as Copper-Eliminating Agents. J Solution Chem 52, 304–325 (2023). https://doi.org/10.1007/s10953-022-01233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01233-4

Keywords

Navigation