Skip to main content
Log in

The SIT Model Parameters for Interactions of Uranyl Ion with Chloride and Nitrate Ions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The SIT model for activity coefficients of aqueous ions is popular among radiochemists. So far, this model has no parameters for interactions between uranyl ion and the chloride and nitrate anions, as their evaluation from activity coefficients of uranyl chloride and nitrate could not be recommended due to partial association of these electrolytes. This study discusses the relations of the thermodynamics of associated electrolytes that allows correction of the activity coefficients for effects of complex formation and thus determine the “true” values of the SIT interaction coefficients. At 298 K the following values are obtained: \(\epsilon \left(\text{UO}_{\text{2}}^{\text{2+}},\text{CI}^{{-}}\right)\) = (0.32 ± 0.03); \(\epsilon \left(\text{UO}_{2}\text{C}{\text{l}}^{+},\text{Cl}^{{-}}\right)\) = (0.32 ± 0.02); \(\epsilon \left(\text{UO}_{\text{2}}^{\text{2+}},\text{NO}_{3}^{-}\right)\) = (0.28 ± 0.02); \(\epsilon \left(\text{UO}_{2}\text{N}{\text{O}}_{3}^{+},\text{NO}_{3}^{-}\right)\) = (0.34 ± 0.02).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ragoussi, M.-E., Costa, D.: Fundamentals of the NEA thermochemical database and its influence over national nuclear programs on the performance assessment of deep geological repositories. J. Environ. Radioact 196, 225–231 (2019)

    Article  CAS  Google Scholar 

  2. Voigt, W., Brendler, V., Marsh, K., Rarey, R., Wanner, H., Gaune-Escard, M., Cloke, P., Vercouter, T., Bastrakov, E., Hagemann, S.: Quality assurance in thermodynamic databases for performance assessment studies in waste disposal. Pure Appl. Chem. 79, 883–894 (2007)

    Article  CAS  Google Scholar 

  3. Lewis, G.N., Randall, M.: Thermodynamics and the free energy of chemical substances. McGraw-Hill Book Co., New York and London (1923)

    Google Scholar 

  4. Bichowsky, F.R., Rossini, F.D.: Thermochemistry of chemical substances. Reinhold Publishing Corporation, New York (1936)

    Google Scholar 

  5. Rossini, F.D., Wagman, D.D., Evans, W.H., Levine, S., Jaffe, I.: Selected values of chemical thermodynamic properties. National Bureau of Standards, Circular 500, Washington (1952)

    Google Scholar 

  6. Glushko, V.P. (ed.): Thermal Constants of Substances. Vols. I-X, VINITI, Moscow (1965–1981) (in Russian)

  7. Chase, M.W. (ed.): NIST-JANAF Thermochemical Tables, 4th edn. American Institute of Physics (1998)

  8. Glushko, V.P., Gurvich, L.V. (eds.): Thermodynamic Properties of Individual Substances. Vols. I-IV,Nauka, Moscow (1978–1982) (in Russian)

  9. Cox, J.D., Wagman, D.D., Medvedev, V.A.: CODATA key values for thermodynamics. Hemisphere Publishing Corporation, New York (1989)

    Google Scholar 

  10. Grenthe, I., Gaona, X., Plyasunov, A.V., Rao, L., Runde, W.H., Grambow, B., Konings, R.J.M., Smith, A.L., Moore, E.E.: Second update on the chemical thermodynamics of uranium, neptunium, plutonium, americium and technetium. OECD Publications, Paris (2020)

    Google Scholar 

  11. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  12. Robinson, R.A., Stokes, R.M.: Electrolyte solutions, 2nd edn. Butterworths, London (1959)

    Google Scholar 

  13. Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. (Rome). 70, 551–567 (1980)

    CAS  Google Scholar 

  14. Brønsted, J.N.: Studies on solubility. IV. The principle of the specific interactions of ions. J. Am. Chem. Soc. 44, 877–898 (1922)

    Article  Google Scholar 

  15. Guggenheim, E.A.: The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philos. Mag. 19(7), 588–643 (1935)

    Article  CAS  Google Scholar 

  16. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955)

    Article  CAS  Google Scholar 

  17. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)

    Article  CAS  Google Scholar 

  18. Scatchard, G.: Equilibrium in solution: surface and colloid chemistry. Harvard University Press, Massachusetts (1976)

    Book  Google Scholar 

  19. Grenthe, I., Plyasunov, A.V., Spahiu, K.: Estimations of medium effects on thermodynamic data. In: Grenthe, I., Puigdomenech, I. (eds.) Modelling in aqueous chemistry, pp. 325–426. NEA OECD, Paris (1997)

    Google Scholar 

  20. Plyasunov, A.V., Popova, E.S.: Temperature dependence of the parameter of the SIT model for activity coefficients of 1:1 electrolytes. J. Solution Chem. 42, 1320–1335 (2013)

    Article  CAS  Google Scholar 

  21. Rard, J.A.: The isopiestic method: 100 years later and still in use. J. Solution Chem. 48, 271–282 (2019)

    Article  CAS  Google Scholar 

  22. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical thermodynamics of uranium. OECD nuclear energy agency data bank. North Holland Elsevier Science Publishers B. V., Amsterdam (1992)

    Google Scholar 

  23. Pitzer, K.S.: Electrolyte theory–improvements since Debye and Hückel. Acc. Chem. Res. 10, 371–377 (1977)

    Article  CAS  Google Scholar 

  24. Krumgalz, B.S., Pogorelsky, R., Pitzer, K.S.: Volumetric properties of single aqueous electrolytes from zero to saturation concentration at 298.15 °K represented by Pitzer’s ion-interaction equations. J. Phys. Chem. Ref. Data 25, 663–689 (1996)

    Article  CAS  Google Scholar 

  25. Goldberg, R.N.: An equilibrium model for the calculation of activity and osmotic coefficients in aqueous solutions. J. Res. Natl. Bur Stand. (U S). 89, 251–263 (1984)

    Article  CAS  Google Scholar 

  26. Robinson, R.A., Lim, C.K.: The osmotic and activity coefficients of uranyl nitrate, chloride, and perchlorate at 25°. J. Chem. Soc. 1840–1843(1951)

  27. Pitzer, K.S., Silvester, L.F.: Thermodynamics of electrolytes. VI. Weak electrolytes including H3PO4. J. Solution Chem. 5, 269–277 (1976)

    Article  CAS  Google Scholar 

  28. Pitzer, K.S., Roy, R.N., Silvester, L.F.: Thermodynamics of electrolytes. 7. Sulfuric acid. J. Amer Chem. Soc. 99, 4930–4936 (1977)

    Article  CAS  Google Scholar 

  29. Clegg, S.L., Rard, J.A., Pitzer, K.S.: Thermodynamic Properties of 0–6 mol kg-1 aqueous sulfuric acid from 273.15 to 328.15 K. J. Chem. Soc. Faraday Trans. 90, 1875–1894 (1994)

    Article  CAS  Google Scholar 

  30. Rard, J.A., Clegg, S.L.: Critical evaluation of the thermodynamic properties of aqueous calcium chloride. 1. Osmotic and activity coefficients of 0-10.77 mol·kg-1 aqueous calcium chloride solutions at 298.15 K and correlation with extended Pitzer ion-interaction models. J. Chem. Eng. Data. 42, 819–849 (1977)

    Article  Google Scholar 

  31. Allen, P.G., Bucher, J.J., Shuh, D.K., Edelstein, N.M., Reich, T.: Investigation of aquo and chloro complexes of UO22+, NpO2+, Np4+, and Pu3+ by X-ray absorption fine structure spectroscopy. Inorg. Chem. 36, 4676–4683 (1997)

    Article  CAS  Google Scholar 

  32. Hennig, C., Tutschku, J., Rossberg, A., Bernhard, G., Scheinost, A.C.: Comparative EXAFS investigation of uranium(VI) and -(IV) aquo chloro complexes in solution using a newly developed spectroelectrochemical cell. Inorg. Chem. 44, 6655–6661 (2005)

    Article  CAS  Google Scholar 

  33. Soderholm, L., Skanthakumar, S., Wilson, R.E.: Structural correspondence between uranyl chloride complexes in solution and their stability constants. J. Phys. Chem. A. 115, 4959–4967 (2011)

    Article  CAS  Google Scholar 

  34. Ikeda-Ohno, A., Hennig, C., Tsushima, S., Scheinost, A.C., Yaita, T.: Speciation and structural study of U(IV) and -(VI) in perchloric and nitric acid solutions. Inorg. Chem. 48, 7201–7210 (2009)

    Article  CAS  Google Scholar 

  35. Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Ann. Chim. (Rome). 80, 255–263 (1980)

    Google Scholar 

Download references

Acknowledgements

The author wishes to dedicate this work to the memory of the late Prof. Ingmar Grenthe (KTH, Stockholm, Sweden), with whom the author collaborated in 1992–1995 and in 2015–2020 years. This work was performed in the frame of the Thermochemical Database Project (TDB) of the OECD Nuclear Energy Agency (NEA), with additional support provided by the Ministry of Science and Higher Education of the Russian Federation, project No. FMUF-2022-0003, registration No. 1021051201959-6-1.5.6;1.5.4;1.5.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrey V. Plyasunov.

Ethics declarations

Conflict of interest

The author declares that he has no competing financial interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plyasunov, A.V. The SIT Model Parameters for Interactions of Uranyl Ion with Chloride and Nitrate Ions. J Solution Chem 52, 3–18 (2023). https://doi.org/10.1007/s10953-022-01213-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01213-8

Keywords

Navigation