Skip to main content

Advertisement

Log in

Solubility of Hydrogen Sulfide in Butanols: Experimental, Modeling, and Molecular Interpretation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of hydrogen sulfide in 1-butanol, 2-butanol and tertiary butanol was investigated at temperature from 313.15 to 353.15 K and pressures up to 2.3 MPa. The results show that the H2S solubility in these three isomers at low pressure is comparable and at higher pressures, the H2S solubility increase reflects steric effects, which increase in the order tertiary butyl alcohol > secondary butyl alcohol > normal butyl alcohol. The results were modeled by Peng–Robinson–Stryjek–Vera (PRSV) equation of state and extended Henry’s law as well; thereby, the fugacity coefficients at operational conditions and Henry's law constants of H2S solubility associated with solution enthalpy and entropy at infinite dilution were obtained and the variation of solubility was interpreted in terms of the variation of thermodynamic properties (enthalpy and entropy). The results of the two models are in good agreement in comparison with experimental data with average relative deviations of 2.5%, 2.86%, and 2.98% for 1-butanol, 2-butanol, and tertiary butanol, respectively, for PRSV EoS and 1.55%, 1.51%, and 2.41% for extended Henry’s law.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hochgesand, G.: Rectisol and purisol. Ind. Eng. Chem. 62, 37–43 (1970)

    Article  CAS  Google Scholar 

  2. Derks P.W.J., Versteeg G.F.: The effect of methanol and ethanol on the CO2 absorption rate in aqueous MDEA solvents. Poster presentation at the Fifth Trondheim Conference CO2 Capture and Storage (TCCS-5) (2009)

  3. Archan, A., Gicquel, L., Provost, E., Furst, W.: Effect of methanol addition on water–CO2–diethanolamine system: influence on CO2 solubility and on liquid phase speciation. Chem. Eng. Res. Des. 86, 592–599 (2008)

    Article  Google Scholar 

  4. Gui, X., Tang, Z.G., Fei, W.: Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (100300 to 300300) K. J. Chem. Eng. Data. 56, 2420–2429 (2011)

    Article  CAS  Google Scholar 

  5. Suzuki, K., Sue, H.: Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-I-propanol, methane-ethanol, methane-I-propanol, ethane-ethanol, and ethane-I-propanol systems. J. Chem. Eng. Data 35, 63–66 (1990)

    Article  CAS  Google Scholar 

  6. Lim, J.S., Yoon, C.H., Yoo, K.-P.: High-pressure vapor-liquid equilibrium measurement for the binary mixtures of carbon dioxide+n-butanol. Korean J. Chem. Eng. 26, 1754–1758 (2009)

    Article  CAS  Google Scholar 

  7. Ishihara, K., Tsukajima, A., Tanaka, H., Kato, M., Sako, T., Sato, M., Hakuta, T.: Vapor-liquid equilibrium for carbon dioxide+1-butanol at high pressure. J. Chem. Eng. Data 41, 324–325 (1996)

    Article  CAS  Google Scholar 

  8. Chen, H.-I., Chang, H.-Y., Chen, P.-H.: High-pressure phase equilibria of carbon dioxide+1-butanol, and carbon dioxide+water+1-butanol systems. J. Chem. Eng. Data 47, 776–780 (2002)

    Article  CAS  Google Scholar 

  9. BorchJensen, C., Staby, A., Mollerup, J.: (1994) Mutual solubility of 1-butanol and carbon dioxide ethene ethane or propane at a reduced supercritical solvent temperature of 103. J. Supercritic. Fluid. 7(4), 231–244 (1994)

    Article  CAS  Google Scholar 

  10. Short, I., Sahgal, A., Hayduk, W.: Solubility of ammonia and hydrogen sulfide in several polar solvents. J. Chem. Eng. Data 28, 63–66 (1983)

    Article  CAS  Google Scholar 

  11. Shokouhi, M., Rezaierad, A.R., Zekordi, S.-M., Abbasghorbani, M., Vahidi, M.: Solubility of hydrogen sulfide in ethanediol, 1,2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling. J. Chem. Eng. Data 61, 512–524 (2016)

    Article  CAS  Google Scholar 

  12. Stryjek, R., Vera, J.H.: Relations in binary systems. Can. J. Chem. Eng. 64, 334–340 (1986)

    Article  CAS  Google Scholar 

  13. Stryjek, R., Vera, J.H.: PRSV: an improved peng—robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng. 64, 323–333 (1986)

    Article  CAS  Google Scholar 

  14. A.Z., Panagiotopoulos, R.C., Reid, New Mixing Rule for Cubic Equation of State for Highly Polar Asymmetric Systems, Equations of State: Theories and applications. In: K.C. Chao, and R.L. Robinson. (Eds.), ACS Symp. Ser. 300, 571 (1986).

  15. I. Kritchevsky, A. Ilinskaya, Partial molal volume of gases dissolved in liquids (A contribution to the thermodynamics of dilute solution of non-electrolytes). Acta Physicochim. U.R.S.S. 20, 327–348 (1945)

  16. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn., p. 377. Prentice-Hall, Englewood (1986)

    Google Scholar 

  17. Shokouhi, M., Farahani, H., Hosseini-Jenab, M., Jalili, A.H.: Solubility of hydrogen sulfide in N-methylacetamide and N,N-dimethylacetamide: experimental measurement and modeling. J. Chem. Eng. Data 60, 499–508 (2015)

    Article  CAS  Google Scholar 

  18. Shokouhi, M., Farahani, H., Hosseini-Jenab, M.: Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide. Fluid Ph. Equilib. 367, 29–37 (2014)

    Article  CAS  Google Scholar 

  19. Shokouhi, M., Jalili, A.H., Zoghi, A.T.: Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution. J. Chem. Thermodyn. 106, 232–242 (2017)

    Article  CAS  Google Scholar 

  20. Shokouhi, M., Farahani, H., Vahidi, M., Taheri, S.A.: Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. J. Chem. Eng. Data 62, 3401–3408 (2017)

    Article  CAS  Google Scholar 

  21. Fandino, O., Lopez, E.R., Lugo, L., Teodorescu, M., Mainar, A.M., Fernandez, J.: Solubility of carbon dioxide in two pentaerythritol ester oils between (283 and 333) K. J. Chem. Eng. Data 53, 1854–1861 (2008)

    Article  CAS  Google Scholar 

  22. Almantariotis, D., Fandino, O., Coxam, J.Y., Costa Gomes, M.F.: Direct measurement of the heat of solution and solubility of carbon dioxide in 1-hexyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide and 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide. Int. J. Greenh. Gas Control 10(1), 329–340 (2012)

    Article  CAS  Google Scholar 

  23. Li, X., Jiang, Y., Han, G., Deng, D.: Investigation of the solubilities of carbon dioxide in some low volatile solvents and their thermodynamic properties. J. Chem. Eng. Data 61, 1254–1261 (2016)

    Article  CAS  Google Scholar 

  24. NIST Scientific and Technical Databases, Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/ (accessed March 2018)

  25. Shoemaker, D.P., Garland, C.W., Steinfeld, J.I., Nibler, J.W.: Experiments in Physical Chemistry, 4th edn. McGraw-Hill, New York (1981)

    Google Scholar 

  26. Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)

    Article  CAS  Google Scholar 

  27. A.Z., Panagiotopoulos, R.C., Reid, New mixing rule for cubic equation of state for highly polar asymmetric systems, equations of state: Theories and applications, ACS Symp. Ser. 300, 571 (1986).

  28. Mazloumi, S.H., Haghtalab, A., Jalili, A.H., Shokouhi, M.: Solubility of H2S in aqueous diisopropanolamine+piperazine solution: new experimental data modeling with the electrolyte cubic square-well equation of state. J. Chem. Eng. Data 57, 2625–2631 (2012)

    Article  CAS  Google Scholar 

  29. Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N.: Solubility of H2S in Ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 54, 1844–1849 (2009)

    Article  CAS  Google Scholar 

  30. Zoghi, A.T., Shokouhi, M.: Measuring solubility of hydrogen sulfide in aqueous blends of N-methyldiethanolamine and 2-(2-aminoethyl)amino)ethanol and correlating by Deshmukh-Mather model. J. Chem. Thermodyn. 100, 106–115 (2016)

    Article  CAS  Google Scholar 

  31. Shokouhi, M., Zoghi, A.T., Vahidi, M., Moshtari, B.: Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine. J. Chem. Eng. Data 60, 1250–1258 (2015)

    Article  CAS  Google Scholar 

  32. Xia, J., Kams, A.P.-S., Maurer, G.: Solubility of H2S in (H2O + Piperazine) and in (H2O + MDEA + Piperazine). Fluid Ph. Equilib. 207, 23–34 (2003)

    Article  CAS  Google Scholar 

  33. Speyer, D., Mauere, G.: Solubility of hydrogen sulfide in aqueous solution of piperazine in the low gas-loading region. J. Chem. Eng. Data 56, 763–767 (2011)

    Article  CAS  Google Scholar 

  34. Jou, F.-Y., Mather, A.E.: Solubility of hydrogen sulfide in [bmim][PF6]. Int. J. Thermophys. 28, 490–495 (2007)

    Article  CAS  Google Scholar 

  35. MacGregor, R.J., Mather, A.E.: Equilibrium solubility of H2S and CO2 and their mixtures in a mixed solvent Can. J. Chem. Eng. Data 69, 1357–1366 (1991)

    CAS  Google Scholar 

  36. Jou, F.Y., Mather, A.E., Otto, F.D.: Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Ind. Eng. Chem. Process Des. Dev. 21, 539–544 (1982)

    Article  CAS  Google Scholar 

  37. Ma’mun, S., Nilsen, R., Svendsen, H.F., Juliussen, O.: Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions. J. Chem. Eng. Data 50, 630–634 (2005)

    Article  Google Scholar 

  38. Chen, J.-T., Chang, W.-C.: Density and viscosity for ethyl 3-ethoxypropionate + methacrylic acid, + benzyl methacrylate, and + 2-hydroxyethyl methacrylate. J. Chem. Eng. Data 50(2005), 1991–1994 (2005)

    Article  CAS  Google Scholar 

  39. Saleh, M.A., Habibullah, M., Shamsuddin Ahmed, M., Uddin, S.M.H., Uddin, M.A., Khan, F.M.: Excess molar volumes of the systems m-xylene + 1-propanol, + 2-propanol, + 1-butanol, + 2-methyl-2-propanol. Phys. Chem. Liq. 43, 139–148 (2005)

    Article  CAS  Google Scholar 

  40. Westwood, B.M., Kabadi, V.N.: A novel pycnometer for density measurements of liquids at elevated temperatures. J. Chem. Thermodyn. 35, 1965–1974 (2003)

    Article  CAS  Google Scholar 

  41. Indraswati, N., Wicaksana, F., Hindarso, H., Ismadji, S.: Measurements of density and viscosity of binary mixtures of several flavor compounds with 1-butanol and 1-pentanol at 293.15 K, 303.15 K, 313.15 K and 323.15 K. J. Chem. Eng. Data 46, 696–702 (2001)

    Article  CAS  Google Scholar 

  42. Faranda, S., Foca, G., Marchetti, A., Palyi, G., Tassi, L., Zucchi, C.: Density measurements of the binary mixtures of 2-butanone and 2-butanol at temperatures from −10 to 80 C. J. Mol. Liq. 111, 117–123 (2004)

    Article  CAS  Google Scholar 

  43. G. Liessmann, W. Schmidt, S. Reiffarth.: Recommended Thermophysical Data: Data compilation of the Saechsische Olefinwerke Boehlen, pp. 91–92. Germany (2014)

  44. Kemme, H.R., Kreps, S.I.: Vapor pressure of primary n-alkyl chlorides and alcohols. J. Chem. Eng. Data 14, 98–102 (1969)

    Article  CAS  Google Scholar 

  45. Butler, J.A.V., Ramchandani, C.N., Thomson, D.W.: The solubility of non electrolytes part I the free energy of hydration of some aliphatic alcohols. J. Chem. Soc. London (1935). https://doi.org/10.1039/jr9350000280

    Article  Google Scholar 

  46. Ambrose, D., Townsend, R.: The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols. J. Chem. Soc. London 54, 3614–3625 (1963)

    Google Scholar 

  47. Biddiscombe, D.P., Collerson, R.R., Handley, R., Herington, E.F.G., Martin, J.F., Sprake, C.H.S.: Thermodynamic properties of organic oxygen compounds part VIII purification and vapour pressures of the propyl and butyl alcohols. J. Chem. Soc. London (1963). https://doi.org/10.1039/jr9630001954

    Article  Google Scholar 

  48. Dejoz, A., Gonzalez-Alfaro, V., Llopis, F.J., Miguel, P.J., Vazquez, M.I.: Isobaric vapor-liquid equilibrium of binary mixtures of 1-butanol + chlorobenzene and 2-butanol + chlorobenzene at 20 and 100 kPa. J. Chem. Eng. Data 42, 374–378 (1997)

    Article  CAS  Google Scholar 

  49. Martinez, S., Garriga, R., Perez, P., Gracia, M.: Vapor liquid equilibrium between (278.15 and 323.15) K and excess functions at T =298.15 K for 1-bromobutane with 2-methyl-1-propanol or 2-butanol. J. Chem. Eng. Data 48, 294–301 (2003)

    Article  CAS  Google Scholar 

  50. Nasirzadeh, K., Zimin, D., Neueder, R., Kunz, W.: Vapor-pressure measurements of liquid solutions at different temperatures: apparatus for use over an extended temperature range and some new data. J. Chem. Eng. Data 49, 607–612 (2004)

    Article  CAS  Google Scholar 

  51. Monton, J.B., Munoz, R., Burguet, M.C., de la Torre, J.: Isobaric vapor-liquid equilibria for the binary systems isobutyl alcohol+ isobutyl acetate and tert-butyl alcohol + tert-butyl acetate at 20 and 101.3 kPa. Fluid Ph. Equilib. 227, 19–25 (2005)

    Article  CAS  Google Scholar 

  52. Ortega, J., Espiau, F., Postigo, M.: Isobaric vapor-liquid equilibria and excess quantities for binary mixtures of an ethyl ester + tert-butanol and a new approach to VLE data processing. J. Chem. Eng. Data 48, 916–924 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to express our appreciation to the Research Council of the Research Institute of Petroleum Industry (RIPI) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Vahidi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shokouhi, M., Vahidi, M., Mehrabi, M. et al. Solubility of Hydrogen Sulfide in Butanols: Experimental, Modeling, and Molecular Interpretation. J Solution Chem 51, 1522–1539 (2022). https://doi.org/10.1007/s10953-022-01207-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01207-6

Keywords

Navigation