Abstract
The solubility of hydrogen sulfide in 1-butanol, 2-butanol and tertiary butanol was investigated at temperature from 313.15 to 353.15 K and pressures up to 2.3 MPa. The results show that the H2S solubility in these three isomers at low pressure is comparable and at higher pressures, the H2S solubility increase reflects steric effects, which increase in the order tertiary butyl alcohol > secondary butyl alcohol > normal butyl alcohol. The results were modeled by Peng–Robinson–Stryjek–Vera (PRSV) equation of state and extended Henry’s law as well; thereby, the fugacity coefficients at operational conditions and Henry's law constants of H2S solubility associated with solution enthalpy and entropy at infinite dilution were obtained and the variation of solubility was interpreted in terms of the variation of thermodynamic properties (enthalpy and entropy). The results of the two models are in good agreement in comparison with experimental data with average relative deviations of 2.5%, 2.86%, and 2.98% for 1-butanol, 2-butanol, and tertiary butanol, respectively, for PRSV EoS and 1.55%, 1.51%, and 2.41% for extended Henry’s law.
Similar content being viewed by others
References
Hochgesand, G.: Rectisol and purisol. Ind. Eng. Chem. 62, 37–43 (1970)
Derks P.W.J., Versteeg G.F.: The effect of methanol and ethanol on the CO2 absorption rate in aqueous MDEA solvents. Poster presentation at the Fifth Trondheim Conference CO2 Capture and Storage (TCCS-5) (2009)
Archan, A., Gicquel, L., Provost, E., Furst, W.: Effect of methanol addition on water–CO2–diethanolamine system: influence on CO2 solubility and on liquid phase speciation. Chem. Eng. Res. Des. 86, 592–599 (2008)
Gui, X., Tang, Z.G., Fei, W.: Solubility of CO2 in alcohols, glycols, ethers, and ketones at high pressures from (100300 to 300300) K. J. Chem. Eng. Data. 56, 2420–2429 (2011)
Suzuki, K., Sue, H.: Isothermal vapor-liquid equilibrium data for binary systems at high pressures: carbon dioxide-methanol, carbon dioxide-ethanol, carbon dioxide-I-propanol, methane-ethanol, methane-I-propanol, ethane-ethanol, and ethane-I-propanol systems. J. Chem. Eng. Data 35, 63–66 (1990)
Lim, J.S., Yoon, C.H., Yoo, K.-P.: High-pressure vapor-liquid equilibrium measurement for the binary mixtures of carbon dioxide+n-butanol. Korean J. Chem. Eng. 26, 1754–1758 (2009)
Ishihara, K., Tsukajima, A., Tanaka, H., Kato, M., Sako, T., Sato, M., Hakuta, T.: Vapor-liquid equilibrium for carbon dioxide+1-butanol at high pressure. J. Chem. Eng. Data 41, 324–325 (1996)
Chen, H.-I., Chang, H.-Y., Chen, P.-H.: High-pressure phase equilibria of carbon dioxide+1-butanol, and carbon dioxide+water+1-butanol systems. J. Chem. Eng. Data 47, 776–780 (2002)
BorchJensen, C., Staby, A., Mollerup, J.: (1994) Mutual solubility of 1-butanol and carbon dioxide ethene ethane or propane at a reduced supercritical solvent temperature of 103. J. Supercritic. Fluid. 7(4), 231–244 (1994)
Short, I., Sahgal, A., Hayduk, W.: Solubility of ammonia and hydrogen sulfide in several polar solvents. J. Chem. Eng. Data 28, 63–66 (1983)
Shokouhi, M., Rezaierad, A.R., Zekordi, S.-M., Abbasghorbani, M., Vahidi, M.: Solubility of hydrogen sulfide in ethanediol, 1,2-propanediol, 1-propanol, and 2-propanol: experimental measurement and modeling. J. Chem. Eng. Data 61, 512–524 (2016)
Stryjek, R., Vera, J.H.: Relations in binary systems. Can. J. Chem. Eng. 64, 334–340 (1986)
Stryjek, R., Vera, J.H.: PRSV: an improved peng—robinson equation of state for pure compounds and mixtures. Can. J. Chem. Eng. 64, 323–333 (1986)
A.Z., Panagiotopoulos, R.C., Reid, New Mixing Rule for Cubic Equation of State for Highly Polar Asymmetric Systems, Equations of State: Theories and applications. In: K.C. Chao, and R.L. Robinson. (Eds.), ACS Symp. Ser. 300, 571 (1986).
I. Kritchevsky, A. Ilinskaya, Partial molal volume of gases dissolved in liquids (A contribution to the thermodynamics of dilute solution of non-electrolytes). Acta Physicochim. U.R.S.S. 20, 327–348 (1945)
Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 2nd edn., p. 377. Prentice-Hall, Englewood (1986)
Shokouhi, M., Farahani, H., Hosseini-Jenab, M., Jalili, A.H.: Solubility of hydrogen sulfide in N-methylacetamide and N,N-dimethylacetamide: experimental measurement and modeling. J. Chem. Eng. Data 60, 499–508 (2015)
Shokouhi, M., Farahani, H., Hosseini-Jenab, M.: Experimental solubility of hydrogen sulfide and carbon dioxide in dimethylformamide and dimethylsulfoxide. Fluid Ph. Equilib. 367, 29–37 (2014)
Shokouhi, M., Jalili, A.H., Zoghi, A.T.: Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution. J. Chem. Thermodyn. 106, 232–242 (2017)
Shokouhi, M., Farahani, H., Vahidi, M., Taheri, S.A.: Experimental solubility of carbonyl sulfide in sulfolane and γ-butyrolactone. J. Chem. Eng. Data 62, 3401–3408 (2017)
Fandino, O., Lopez, E.R., Lugo, L., Teodorescu, M., Mainar, A.M., Fernandez, J.: Solubility of carbon dioxide in two pentaerythritol ester oils between (283 and 333) K. J. Chem. Eng. Data 53, 1854–1861 (2008)
Almantariotis, D., Fandino, O., Coxam, J.Y., Costa Gomes, M.F.: Direct measurement of the heat of solution and solubility of carbon dioxide in 1-hexyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide and 1-octyl-3-methylimidazolium bis[trifluoromethylsulfonyl]amide. Int. J. Greenh. Gas Control 10(1), 329–340 (2012)
Li, X., Jiang, Y., Han, G., Deng, D.: Investigation of the solubilities of carbon dioxide in some low volatile solvents and their thermodynamic properties. J. Chem. Eng. Data 61, 1254–1261 (2016)
NIST Scientific and Technical Databases, Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/ (accessed March 2018)
Shoemaker, D.P., Garland, C.W., Steinfeld, J.I., Nibler, J.W.: Experiments in Physical Chemistry, 4th edn. McGraw-Hill, New York (1981)
Peng, D.Y., Robinson, D.B.: A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976)
A.Z., Panagiotopoulos, R.C., Reid, New mixing rule for cubic equation of state for highly polar asymmetric systems, equations of state: Theories and applications, ACS Symp. Ser. 300, 571 (1986).
Mazloumi, S.H., Haghtalab, A., Jalili, A.H., Shokouhi, M.: Solubility of H2S in aqueous diisopropanolamine+piperazine solution: new experimental data modeling with the electrolyte cubic square-well equation of state. J. Chem. Eng. Data 57, 2625–2631 (2012)
Jalili, A.H., Rahmati-Rostami, M., Ghotbi, C., Hosseini-Jenab, M., Ahmadi, A.N.: Solubility of H2S in Ionic liquids [bmim][PF6], [bmim][BF4], and [bmim][Tf2N]. J. Chem. Eng. Data 54, 1844–1849 (2009)
Zoghi, A.T., Shokouhi, M.: Measuring solubility of hydrogen sulfide in aqueous blends of N-methyldiethanolamine and 2-(2-aminoethyl)amino)ethanol and correlating by Deshmukh-Mather model. J. Chem. Thermodyn. 100, 106–115 (2016)
Shokouhi, M., Zoghi, A.T., Vahidi, M., Moshtari, B.: Solubility of carbon dioxide in aqueous blends of 2-amino-2-methyl-1-propanol and N-methyldiethanolamine. J. Chem. Eng. Data 60, 1250–1258 (2015)
Xia, J., Kams, A.P.-S., Maurer, G.: Solubility of H2S in (H2O + Piperazine) and in (H2O + MDEA + Piperazine). Fluid Ph. Equilib. 207, 23–34 (2003)
Speyer, D., Mauere, G.: Solubility of hydrogen sulfide in aqueous solution of piperazine in the low gas-loading region. J. Chem. Eng. Data 56, 763–767 (2011)
Jou, F.-Y., Mather, A.E.: Solubility of hydrogen sulfide in [bmim][PF6]. Int. J. Thermophys. 28, 490–495 (2007)
MacGregor, R.J., Mather, A.E.: Equilibrium solubility of H2S and CO2 and their mixtures in a mixed solvent Can. J. Chem. Eng. Data 69, 1357–1366 (1991)
Jou, F.Y., Mather, A.E., Otto, F.D.: Solubility of hydrogen sulfide and carbon dioxide in aqueous methyldiethanolamine solutions. Ind. Eng. Chem. Process Des. Dev. 21, 539–544 (1982)
Ma’mun, S., Nilsen, R., Svendsen, H.F., Juliussen, O.: Solubility of carbon dioxide in 30 mass % monoethanolamine and 50 mass % methyldiethanolamine solutions. J. Chem. Eng. Data 50, 630–634 (2005)
Chen, J.-T., Chang, W.-C.: Density and viscosity for ethyl 3-ethoxypropionate + methacrylic acid, + benzyl methacrylate, and + 2-hydroxyethyl methacrylate. J. Chem. Eng. Data 50(2005), 1991–1994 (2005)
Saleh, M.A., Habibullah, M., Shamsuddin Ahmed, M., Uddin, S.M.H., Uddin, M.A., Khan, F.M.: Excess molar volumes of the systems m-xylene + 1-propanol, + 2-propanol, + 1-butanol, + 2-methyl-2-propanol. Phys. Chem. Liq. 43, 139–148 (2005)
Westwood, B.M., Kabadi, V.N.: A novel pycnometer for density measurements of liquids at elevated temperatures. J. Chem. Thermodyn. 35, 1965–1974 (2003)
Indraswati, N., Wicaksana, F., Hindarso, H., Ismadji, S.: Measurements of density and viscosity of binary mixtures of several flavor compounds with 1-butanol and 1-pentanol at 293.15 K, 303.15 K, 313.15 K and 323.15 K. J. Chem. Eng. Data 46, 696–702 (2001)
Faranda, S., Foca, G., Marchetti, A., Palyi, G., Tassi, L., Zucchi, C.: Density measurements of the binary mixtures of 2-butanone and 2-butanol at temperatures from −10 to 80 C. J. Mol. Liq. 111, 117–123 (2004)
G. Liessmann, W. Schmidt, S. Reiffarth.: Recommended Thermophysical Data: Data compilation of the Saechsische Olefinwerke Boehlen, pp. 91–92. Germany (2014)
Kemme, H.R., Kreps, S.I.: Vapor pressure of primary n-alkyl chlorides and alcohols. J. Chem. Eng. Data 14, 98–102 (1969)
Butler, J.A.V., Ramchandani, C.N., Thomson, D.W.: The solubility of non electrolytes part I the free energy of hydration of some aliphatic alcohols. J. Chem. Soc. London (1935). https://doi.org/10.1039/jr9350000280
Ambrose, D., Townsend, R.: The critical properties and vapour pressures, above five atmospheres, of six aliphatic alcohols. J. Chem. Soc. London 54, 3614–3625 (1963)
Biddiscombe, D.P., Collerson, R.R., Handley, R., Herington, E.F.G., Martin, J.F., Sprake, C.H.S.: Thermodynamic properties of organic oxygen compounds part VIII purification and vapour pressures of the propyl and butyl alcohols. J. Chem. Soc. London (1963). https://doi.org/10.1039/jr9630001954
Dejoz, A., Gonzalez-Alfaro, V., Llopis, F.J., Miguel, P.J., Vazquez, M.I.: Isobaric vapor-liquid equilibrium of binary mixtures of 1-butanol + chlorobenzene and 2-butanol + chlorobenzene at 20 and 100 kPa. J. Chem. Eng. Data 42, 374–378 (1997)
Martinez, S., Garriga, R., Perez, P., Gracia, M.: Vapor liquid equilibrium between (278.15 and 323.15) K and excess functions at T =298.15 K for 1-bromobutane with 2-methyl-1-propanol or 2-butanol. J. Chem. Eng. Data 48, 294–301 (2003)
Nasirzadeh, K., Zimin, D., Neueder, R., Kunz, W.: Vapor-pressure measurements of liquid solutions at different temperatures: apparatus for use over an extended temperature range and some new data. J. Chem. Eng. Data 49, 607–612 (2004)
Monton, J.B., Munoz, R., Burguet, M.C., de la Torre, J.: Isobaric vapor-liquid equilibria for the binary systems isobutyl alcohol+ isobutyl acetate and tert-butyl alcohol + tert-butyl acetate at 20 and 101.3 kPa. Fluid Ph. Equilib. 227, 19–25 (2005)
Ortega, J., Espiau, F., Postigo, M.: Isobaric vapor-liquid equilibria and excess quantities for binary mixtures of an ethyl ester + tert-butanol and a new approach to VLE data processing. J. Chem. Eng. Data 48, 916–924 (2003)
Acknowledgements
We would like to express our appreciation to the Research Council of the Research Institute of Petroleum Industry (RIPI) for financial support of this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Shokouhi, M., Vahidi, M., Mehrabi, M. et al. Solubility of Hydrogen Sulfide in Butanols: Experimental, Modeling, and Molecular Interpretation. J Solution Chem 51, 1522–1539 (2022). https://doi.org/10.1007/s10953-022-01207-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-022-01207-6