Skip to main content

Advertisement

Log in

Thermal Conductivity of Ionic Liquids: Recent Challenges Facing Theory and Experiment

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Recently ionic liquids have been considered as prospective substances for application as heat transfer fluids, which requires accurate knowledge of their thermal conductivity as a function of thermodynamic parameters of state. Here we present a review of the state of the art for datasets of experimental data existing to date as well as methods developed for predicting this transport property. Special attention is focused on the usage of other thermodynamic quantities, which are more accessible, for such predictive calculations supplied with analysis of physical premises of their interplay with the thermal conductivity instead of phenomenological correlations. We formulate several sets of open problems in this field of study supplied with some preliminary illustrative estimations. As supplementary material, we describe how an automatised access to the comprehensive collection of the respective experimental data, Ionic Liquids Database – ILThermo (v2.0), can be implemented in a programmable way.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Minea, A.A.: Overview of ionic liquids as candidates for new heat transfer fluids. Int. J. Thermophys. 41, 151 (2020). https://doi.org/10.1007/s10765-020-02727-3

    Article  CAS  Google Scholar 

  2. Fabre, E., Murshed, S.M.S.: A review of the thermophysical properties and potential of ionic liquids for thermal applications. J. Mat. Chem. A 9, 15861–15879 (2021). https://doi.org/10.1039/D1TA03656D

    Article  CAS  Google Scholar 

  3. Nieto de Castro, C.A., Lourenço, M.J.V.: Towards the correct measurement of thermal conductivity of ionic melts and nanofluids. Energies 13, 99 (2020). https://doi.org/10.3390/en13010099

    Article  Google Scholar 

  4. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7, 232–250 (2014). https://doi.org/10.1039/C3EE42099J

    Article  CAS  Google Scholar 

  5. Chernikova, E.A., Glukhov, L.M., Krasovskiy, V.G., Kustov, L.M., Vorobyeva, M.G., Koroteev, A.A.: Ionic liquids as heat transfer fluids: comparison with known systems, possible applications, advantages and disadvantages. Russ. Chem. Rev. 84, 875 (2015). https://doi.org/10.1070/RCR4510

    Article  CAS  Google Scholar 

  6. França, J.M.P., Lourencço, M.J.V., Murshed, S.M.S., Pádua, A.A.H., Nieto de Castro, C.A.: Thermal conductivity of ionic liquids and ionanofluids and their feasibility as heat transfer fluids. Ind. Eng. Chem. Res. 57, 6516–6529 (2018). https://doi.org/10.1021/acs.iecr.7b04770

    Article  CAS  Google Scholar 

  7. Kazakov, A., Magee, J.W., Chirico, R.D., Paulechka, E., Diky, V., Muzny, C.D., Kroenlein, K., Frenkel, M.: "NIST Standard Reference Database 147: NIST Ionic Liquids Database— (ILThermo)", Version 2.0, p. 20899. National Institute of Standards and Technology, Gaithersburg, MD. http://ilthermo.boulder.nist.gov

  8. Stanimirovic, A.M., Zivkovic, E.M., Miloavic, N.D., Kijevčanin, M.L.: Application and testing of a new simple experimental set-up for thermal conductivity measurements of liquids. Therm. Sci. 21, 1195–1202 (2017). https://doi.org/10.2298/TSCI160324219S

    Article  Google Scholar 

  9. Wakeham, W.A., Nagashima, A., Sengers, J.V. (eds.): Measurement of the Transport Properties of Fluids, Experimental thermodynamics, III. Blackwell Scientific Publications, Boca Raton (1991)

    Google Scholar 

  10. Tritt, T.M. (ed.): Thermal Conductivity: Theory, Properties, and Applications. Kluwer Academic - Plenum Publishers, New York (2005)

    Google Scholar 

  11. Monchau, J.P., Lalanne, N., Ibos, L. In: 18th International Congress of Metrology (EDP Sciences, 2017), p. 06003. https://doi.org/10.1051/metrology/201706003

  12. Yebra, F., Troncoso, J., Romaní, L.: Thermal conductivity of ionic liquids under pressure. Fluid Phase Equilib. 515, 112573 (2020). https://doi.org/10.1016/j.fluid.2020.112573

  13. Tomida, D., Kenmochi, S., Tsukada, T., Yokoyama, C.: Measurements of thermal conductivity of 1-butyl-3-methylimidazolium tetrafluoroborate at high pressure. Heat Transf. Asian Res. 36, 361–372 (2007). https://doi.org/10.1002/htj.20166

    Article  Google Scholar 

  14. Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Yokoyama, C.: Thermal Conductivities of [bmim][PF 6],[hmim][PF 6], and [omim][PF 6] from 294 to 335 K at Pressures up to 20 MPa. Int. J. Thermophys. 28, 1147–1160 (2007). https://doi.org/10.1007/s10765-007-0241-8

    Article  CAS  Google Scholar 

  15. Tomida, D., Kenmochi, S., Tsukada, T., Qiao, K., Bao, Q., Yokoyama, C.: Viscosity and thermal conductivity of 1-hexyl-3-methylimidazolium tetrafluoroborate and 1-octyl-3-methylimidazolium tetrafluoroborate at pressures up to 20 MPa. Int. J. Thermophys. 33, 959–969 (2012). https://doi.org/10.1007/s10765-012-1233-x

    Article  CAS  Google Scholar 

  16. Tomida, D., Kenmochi, S., Qiao, K., Tsukada, T., Yokoyama, C.: Densities and thermal conductivities of N-alkylpyridinium tetrafluoroborates at high pressure. Fluid Phase Equilib. 340, 31–36 (2013). https://doi.org/10.1016/j.fluid.2012.12.008

    Article  CAS  Google Scholar 

  17. Tomida, D., Kenmochi, S., Qiao, K., Yokoyama, C.: Densities and thermal conductivities of ionic liquids, 1-hexyl-3-methylimidazolium chloride, 1-octyl-3-methylimidazolium chloride, and 1-octyl-3-methylimidazolium bromide, at pressures up to 20 MPa. High Temp. High Press. 46, 101–114 (2017)

    Google Scholar 

  18. McLaughlin, E.: The thermal conductivity of liquids and dense gases. Chem. Rev. 64, 389–428 (1964). https://doi.org/10.1021/cr60230a003

    Article  CAS  Google Scholar 

  19. Ross, R.G., Andersson, P., Sundqvist, B., Backstrom, G.: Thermal conductivity of solids and liquids under pressure. Rep. Prog. Phys. 47, 1347–1401 (1984). https://doi.org/10.1088/0034-4885/47/10/002

    Article  CAS  Google Scholar 

  20. Chen, G.: Perspectives on molecular-level understanding of thermophysics of liquids and future research directions. J. Heat Transf. 144, 010801 (2021). https://doi.org/10.1115/1.4052657

    Article  CAS  Google Scholar 

  21. Rooney, D., Jacquemin, J., Kirchner, B.: Chap. Thermophysical properties of ionic liquids. In: Kirchner, B. (ed.) BIonic Liquids, pp. 185–212. Springer, Berlin (2010). https://doi.org/10.1007/128_2008_32

  22. Tochigi, K., Matsuda, H., Kurihara, K., Kodama, D., Takishima, S.: Thermophysical properties of ionic liquid systems and their applications. Kagaku Kogaku Ronbunshu 40, 347–365 (2014). https://doi.org/10.1252/kakoronbunshu.40.347

    Article  CAS  Google Scholar 

  23. Haghbakhsh, R., Raeissi, S.: A novel correlative approach for ionic liquid thermal conductivities. J. Mol. Liq. 236, 214–219 (2017). https://doi.org/10.1016/j.molliq.2017.03.117

    Article  CAS  Google Scholar 

  24. Cardona-Palacio, L.F.: Modelo simple y generalizado para estimar la conductividad térmica de líquidos iónicos. Rev. Cient. 42, 276–289 (2021). https://doi.org/10.14483/23448350.18052

    Article  Google Scholar 

  25. Gardas, R.L., Coutinho, J.A.P.: Group contribution methods for the prediction of thermophysical and transport properties of ionic liquids. AIChE J. 55, 1274–1290 (2009). https://doi.org/10.1002/aic.11737

    Article  CAS  Google Scholar 

  26. Albert, J., Müller, K.: Thermal conductivity of ionic liquids: an estimation approach. Chem. Eng. Sci. 119, 109–113 (2014). https://doi.org/10.1016/j.ces.2014.08.023

    Article  CAS  Google Scholar 

  27. Chen, Q.L., Wu, K.J., He, C.H.: Thermal conductivity of ionic liquids at atmospheric pressure: database, analysis, and prediction using a topological index method. Ind. Eng. Chem. Res. 53, 7224–7232 (2014). https://doi.org/10.1021/ie403500w

    Article  CAS  Google Scholar 

  28. Wu, K.J., Zhao, C.X., He, C.H.: Development of a group contribution method for determination of thermal conductivity of ionic liquids. Fluid Phase Equilib. 339, 10–14 (2013). https://doi.org/10.1016/j.fluid.2012.11.024

    Article  CAS  Google Scholar 

  29. Oster, K., Jacquemin, J., Hardacre, C., Ribeiro, A.P.C., Elsinawi, A.: Further development of the predictive models for physical properties of pure ionic liquids: thermal conductivity and heat capacity. J. Chem. Thermodyn. 118, 1–15 (2018). https://doi.org/10.1016/j.jct.2017.10.010

    Article  CAS  Google Scholar 

  30. He, W., Yan, F., Jia, Q., Xia, S., Wang, Q.: Description of the thermal conductivity \(\lambda\) (T, P) of ionic liquids using the structure-property relationship method. J. Chem. Eng. Data 62, 2466–2472 (2017). https://doi.org/10.1021/acs.jced.7b00422

    Article  CAS  Google Scholar 

  31. Zhang, S., Jia, Q., Yan, F., Xia, S., Wang, Q.: Evaluating the properties of ionic liquid at variable temperatures and pressures by quantitative structure-property relationship (QSPR). Chem. Eng. Sci. 231, 116326 (2021). https://doi.org/10.1016/j.ces.2020.116326

    Article  CAS  Google Scholar 

  32. Liu, X., Wang, C., Lan, T., He, M., Zhang, Y.: Prediction of thermal conductivity for guiding molecular design of liquids. ACS Sustain. Chem. Eng. 8, 6022–6032 (2020). https://doi.org/10.1021/acssuschemeng.0c00801

    Article  CAS  Google Scholar 

  33. Hezave, A.Z., Raeissi, S., Lashkarbolooki, M.: Estimation of thermal conductivity of ionic liquids using a perceptron neural network. Ind. Eng. Chem. Res. 51, 9886–9893 (2012). https://doi.org/10.1021/ie202681b

    Article  CAS  Google Scholar 

  34. Lazzús, J.A.: Estimation of the thermal conductivity \(\lambda (T, P)\) of ionic liquids using a neural network optimized with genetic algorithms. C. R. Chim. 19(3), 333–341 (2016). https://doi.org/10.1016/j.crci.2015.09.010

    Article  CAS  Google Scholar 

  35. Mousavi, S.P., Atashrouz, S., Rezaei, F., Peyvastegan, M.E., Hemmati-Sarapardeh, A., Mohaddespour, A.: Modeling thermal conductivity of ionic liquids: a comparison between chemical structure and thermodynamic properties-based models. J. Mol. Liq. 322, 114911 (2021). https://doi.org/10.1016/j.molliq.2020.114911

    Article  CAS  Google Scholar 

  36. Klaas, D.M., Viswanath, D.S.: A correlation for the prediction of thermal conductivity of liquids. Ind. Eng. Chem. Res. 37, 2064–2068 (1998). https://doi.org/10.1021/ie9706830

    Article  CAS  Google Scholar 

  37. Horrocks, J.K., McLaughlin, E.: Thermal conductivity of simple molecules in the condensed state. Trans. Faraday Soc. 56, 206–212 (1960). https://doi.org/10.1039/TF9605600206

    Article  CAS  Google Scholar 

  38. Horrocks, J.K., McLaughlin, E.: Temperature dependence of the thermal conductivity of liquids. Trans. Faraday Soc. 59, 1709–1716 (1963). https://doi.org/10.1039/TF9635901709

    Article  CAS  Google Scholar 

  39. Kamal, I., McLaughlin, E.: Pressure and volume dependence of the thermal conductivity of liquids. Trans. Faraday Soc. 60, 809–816 (1964). https://doi.org/10.1039/TF9646000809

    Article  CAS  Google Scholar 

  40. Viswanath, D.S., Rao, M.B.: Thermal conductivity of liquids and its temperature dependence. J. Phys. D Appl. Phys. 3, 1444–1450 (1970). https://doi.org/10.1088/0022-3727/3/10/309

    Article  CAS  Google Scholar 

  41. Grüneisen, E.: Theorie des festen Zustandes einatomiger elemente. Ann. Phys. 344, 257–306 (1912). https://doi.org/10.1002/andp.19123441202

    Article  Google Scholar 

  42. Stacey, F.D., Hodgkinson, J.H.: Thermodynamics with the Grüneisen parameter: fundamentals and applications to high pressure physics and geophysics. Phys. Earth Planet. Inter. 286, 42–68 (2019). https://doi.org/10.1016/j.pepi.2018.10.006

    Article  Google Scholar 

  43. Knopoff, L., Shapiro, J.N.: Pseudo-Grüneisen parameter for liquids. Phys. Rev. B 1, 3893–3895 (1970). https://doi.org/10.1103/PhysRevB.1.3893

    Article  Google Scholar 

  44. Pandey, J.D., Shukla, A.K., Singh, N., Sanguri, V.: Estimation of thermodynamic properties of ionic liquids. J. Mol. Liq. 315, 113585 (2020). https://doi.org/10.1016/j.molliq.2020.113585

    Article  CAS  Google Scholar 

  45. Bridgman, P.W.: The thermal conductivity of liquids under pressure. Proc. Am. Acad. Arts Sci. 59, 141–169 (1923). https://doi.org/10.2307/20026073

    Article  CAS  Google Scholar 

  46. Osida, I.: On the thermal conductivity of liquid. In: Proceedings of the Physico-Mathematical Society of Japan, 3rd Series, vol. 21, pp. 353–356 (1939). https://doi.org/10.11429/ppmsj1919.21.6_353

  47. Paredes, X., Lourenço, M.J., de Castro, C.N., Wakeham, W.: Thermal conductivity of ionic liquids and IoNanofluids. Can molecular theory help? Fluids 6(3), 116 (2021). https://doi.org/10.3390/fluids6030116

    Article  CAS  Google Scholar 

  48. Wu, K.J., Chen, Q.L., He, C.H.: Speed of sound of ionic liquids: database, estimation, and its application for thermal conductivity prediction. AIChE J. 60, 1120–1131 (2014). https://doi.org/10.1002/aic.14346

    Article  CAS  Google Scholar 

  49. Hekayati, J., Esmaeilzadeh, F.: Predictive correlation between surface tension, density, and speed of sound of ionic liquids: Auerbach model revisited. J. Mol. Liq. 274, 193–203 (2019). https://doi.org/10.1016/j.molliq.2018.10.099

    Article  CAS  Google Scholar 

  50. Cardona, L.F., Valderrama, J.O.: Physical and transport properties of ionic liquids using the geometric similitude concept and a cubic equation of state. Part 1: Thermal conductivity and speed of sound of pure substances. J. Mol. Liq. 315, 113681 (2020). https://doi.org/10.1016/j.molliq.2020.113681

    Article  CAS  Google Scholar 

  51. Valderrama, J.O.: A generalized Patel-Teja equation of state for polar and nonpolar fluids and their mixtures. J. Chem. Eng. Jpn. 23, 87–91 (1990). https://doi.org/10.1252/jcej.23.87

    Article  CAS  Google Scholar 

  52. Valderrama, J.O., Cardona, L.F., Rojas, R.E.: A simple computer tool for simultaneously estimating critical, transport, physicochemical, and phase change properties of ionic liquids. Ind. Eng. Chem. Res. (2021). https://doi.org/10.1021/acs.iecr.1c03248

    Article  Google Scholar 

  53. Valderrama, J.O.: The state of the cubic equations of state. Ind. Eng. Chem. Res. 42, 1603–1618 (2003). https://doi.org/10.1021/ie020447b

    Article  CAS  Google Scholar 

  54. Mohanty, S.R.: A relationship between heat conductivity and viscosity of liquids. Nature 168(4262), 42–42 (1951). https://doi.org/10.1038/168042a0

    Article  PubMed  CAS  Google Scholar 

  55. Fröba, A.P., Rausch, M.H., Krzeminski, K., Assenbaum, D., Wasserscheid, P., Leipertz, A.: Thermal conductivity of ionic liquids: measurement and prediction. Int. J. Thermophys. 31, 2059–2077 (2010). https://doi.org/10.1007/s10765-010-0889-3

    Article  CAS  Google Scholar 

  56. Coutinho, J.A.P., Carvalho, P.J., Oliveira, N.M.C.: Predictive methods for the estimation of thermophysical properties of ionic liquids. RSC Adv. 2, 7322–7346 (2012). https://doi.org/10.1039/C2RA20141K

    Article  CAS  Google Scholar 

  57. Rosenfeld, Y.: Relation between the transport coefficients and the internal entropy of simple systems. Phys. Rev. A 15, 2545–2249 (1977). https://doi.org/10.1103/PhysRevA.15.2545

    Article  Google Scholar 

  58. Rosenfeld, Y.: A quasi-universal scaling law for atomic transport in simple fluids. J. Phys. Condens. Matter 11, 5415–5427 (1999). https://doi.org/10.1088/0953-8984/11/28/303

    Article  CAS  Google Scholar 

  59. Dyre, J.C.: Perspective: excess-entropy scaling. J. Chem. Phys. 149, 210901 (2018). https://doi.org/10.1063/1.5055064

    Article  PubMed  CAS  Google Scholar 

  60. Harris, K.R.: Scaling the transport properties of molecular and ionic liquids. J. Mol. Liq. 222, 520–534 (2016). https://doi.org/10.1016/j.molliq.2016.07.029

    Article  CAS  Google Scholar 

  61. Harris, K.R.: Thermodynamic or density scaling of the thermal conductivity of liquids. J. Chem. Phys. 153, 104504 (2020). https://doi.org/10.1063/5.0016389

    Article  PubMed  CAS  Google Scholar 

  62. Khrapak, S.A., Khrapak, A.G.: Correlations between the shear viscosity and thermal conductivity coefficients of dense simple liquids. JETP Lett. 114, 540–544 (2021). https://doi.org/10.1134/S0021364021210037

    Article  CAS  Google Scholar 

  63. Kakinuma, S., Ishida, T., Shirota, H.: Femtosecond Raman-induced Kerr effect study of temperature-dependent intermolecular dynamics in imidazolium-based ionic liquids: effects of anion species and cation alkyl groups. J. Phys. Chem. B 121, 250–264 (2017). https://doi.org/10.1021/acs.jpcb.6b11009

    Article  PubMed  CAS  Google Scholar 

  64. Bolmatov, D., Brazhkin, V.V., Trachenko, K.: The phonon theory of liquid thermodynamics. Sci. Rep. 2, 421 (2012). https://doi.org/10.1038/srep00421

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Yebra, F., Zemánková, K., Troncoso, J.: Speed of sound in ionic liquids with a common ion as a function of pressure and temperature. J. Chem. Thermodyn. 116, 235–240 (2018). https://doi.org/10.1016/j.jct.2017.09.009

    Article  CAS  Google Scholar 

  66. Musiał, M., Zorȩbski, E., Zorȩbski, M., Dzida, M.: Effect of alkyl chain length in cation on thermophysical properties of two homologous series: 1-alkyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imides and 1-alkyl-3-methylimidazolium trifluoromethanesulfonates. J. Mol. Liq. 293, 111511 (2019). https://doi.org/10.1016/j.molliq.2019.111511

    Article  CAS  Google Scholar 

  67. Kincaid, J.F., Eyring, H.: Free volumes and free angle ratios of molecules in liquids. J. Chem. Phys. 6, 620–629 (1938). https://doi.org/10.1063/1.1750134

    Article  CAS  Google Scholar 

  68. Powell, R.E., Roseveare, W.E., Eyring, H.: Diffusion, thermal conductivity, and viscous flow of liquids. Ind. Eng. Chem. 33, 430–435 (1941). https://doi.org/10.1021/ie50376a003

    Article  CAS  Google Scholar 

  69. Feng, G., Chen, M., Bi, S., Goodwin, Z.A.H., Postnikov, E.B., Brilliantov, N., Urbakh, M., Kornyshev, A.A.: Free and bound states of ions in ionic liquids, conductivity, and underscreening paradox. Phys. Rev. X 9, 021024 (2019). https://doi.org/10.1103/PhysRevX.9.021024

    Article  CAS  Google Scholar 

  70. Ge, R., Hardacre, C., Nancarrow, P., Rooney, D.W.: Thermal conductivities of ionic liquids over the temperature range from 293 K to 353 K. J. Chem. Eng. Data 52, 1819–1823 (2007). https://doi.org/10.1021/je700176d

    Article  CAS  Google Scholar 

  71. Koller, T.M., Schmid, S.R., Sachnov, S.J., Rausch, M.H., Wasserscheid, P., Fröba, A.P.: Measurement and prediction of the thermal conductivity of tricyanomethanide-and tetracyanoborate-based imidazolium ionic liquids. Int. J. Thermophys. 35, 195–217 (2014). https://doi.org/10.1007/s10765-014-1617-1

    Article  CAS  Google Scholar 

  72. Anggraini, Y., Sutjahja, I.M., Kurnia, D., Viridi, S.: Effects of anion and alkyl chain length of cation on the thermophysical properties of imidazolium-based ionic liquid. Mater. Today-Proc. 44, 3188–3191 (2021). https://doi.org/10.1016/j.matpr.2020.11.434

    Article  CAS  Google Scholar 

  73. Murphy, T., Varela, L.M., Webber, G.B., Warr, G.G., Atkin, R.: Nanostructure-thermal conductivity relationships in protic ionic liquids. J. Phys. Chem. B 118, 12017–12024 (2014). https://doi.org/10.1021/jp507408r

    Article  PubMed  CAS  Google Scholar 

  74. Krivtsov, A.M., Kuz’kin, V.A.: Derivation of equations of state for ideal crystals of simple structure. Mech. Solids 46, 387–399 (2011). https://doi.org/10.3103/S002565441103006X

    Article  Google Scholar 

  75. Einstein, A.: Eine Beziehung zwischen dem elastischen Verhalten und der spezifischen Wärme bei festen Körpern mit einatomigem Molekül. Ann. Phys. 339, 170–174 (1911). https://doi.org/10.1002/andp.19113390110

    Article  Google Scholar 

  76. Jasiok, B., Postnikov, E.B., Chora̧żewski, M.: The prediction of high-pressure volumetric properties of compressed liquids using the two states model. Phys. Chem. Chem. Phys. 21, 15966–15973 (2019). https://doi.org/10.1039/C9CP02448D

  77. Postnikov, E.B., Goncharov, A.L., Melent’ev, V.V.: Tait equation revisited from the entropic and fluctuational points of view. Int. J. Thermophys. 35, 2115–2123 (2014). https://doi.org/10.1007/s10765-014-1747-5

    Article  CAS  Google Scholar 

  78. Chora̧żewski, M., Postnikov, E.B., Jasiok, B., Nedyalkov, Y.V., Jacquemin, J.: A fluctuation equation of state for prediction of high-pressure densities of ionic liquids. Sci. Rep. 7, 5563 (2017). https://doi.org/10.1038/s41598-017-06225-9

  79. Postnikov, E.B., Jasiok, B., Melent’ev, V.V., Ryshkova, O.S., Korotkovskii, V.I., Radchenko, A.K., Lowe, A.R., Chora̧żewski, M.: Prediction of high pressure properties of complex mixtures without knowledge of their composition as a problem of thermodynamic linear analysis. J. Mol. Liq. 310, 113,016 (2020). https://doi.org/10.1016/j.molliq.2020.113016

  80. Pilarz, J., Feder-Kubis, J., Melent’ev, V.V., Ryshkova, O.S., Korotkovskii, V.I., Radchenko, A.K., Postnikov, E.B., Chora̧żewski, M., Polishuk, I.: Speeds of sound in ionic liquids under elevated pressures. New experimental data and CP-PC-SAFT modelling. J. Mol. Liq. 303, 112669 (2020). https://doi.org/10.1016/j.molliq.2020.112669

  81. Weingärtner, H.: Understanding ionic liquids at the molecular level: facts, problems, and controversies. Ang. Chem. Int. Ed. 47, 654–670 (2008). https://doi.org/10.1002/anie.200604951

    Article  CAS  Google Scholar 

  82. Caminiti, R., Gontrani, L.: (eds.), The Structure of Ionic Liquids. Springer, Berlin (2014). https://doi.org/10.1007/978-3-319-01698-6

  83. Paschoal, V.H., Faria, L.F.O., Ribeiro, M.C.C.: Vibrational spectroscopy of ionic liquids. Chem. Rev. 117, 7053–7112 (2017). https://doi.org/10.1021/acs.chemrev.6b00461

    Article  PubMed  CAS  Google Scholar 

  84. Bedrov, D., Piquemal, J.P., Borodin, O., MacKerell, A.D., Jr., Roux, B., Schröder, C.: Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119, 7940–7995 (2019). https://doi.org/10.1021/acs.chemrev.8b00763

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Shirota, H. In: Nishiyama, K., Yamaguchi, T., Takamuku, T., Yoshida, N. (eds.) Molecular Basics of Liquids and Liquid-Based Materials, pp. 195–229. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-5395-7_7

  86. Einstein, A.: Elementare Betrachtungen über die thermische Molekularbewegung in festen Körpern. Ann. Phys. 340, 679–694 (1911). https://doi.org/10.1002/andp.19113400903

    Article  Google Scholar 

  87. Lindemann, F.A.: Über die Berechnung molekularer Eigenfrequenzen. Z. Phys. 11, 609–612 (1910)

    CAS  Google Scholar 

  88. Valderrama, J.O., Cardona, L.F.: Predicting the melting temperature and the heat of melting of ionic liquids. J. Ion. Liq. 1, 100002 (2021). https://doi.org/10.1016/j.jil.2021.100002

    Article  Google Scholar 

  89. Mital, D.K., Nancarrow, P., Zeinab, S., Jabbar, N.A., Ibrahim, T.H., Khamis, M.I., Taha, A.: Group contribution estimation of ionic liquid melting points: critical evaluation and refinement of existing models. Molecules 26, 2454 (2021). https://doi.org/10.3390/molecules26092454

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Eugene B. Postnikov or Mirosław Chora̧żewski.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 668 kb)

Supplementary file2 (XLSX 40 kb)

Appendix: Basic Assumptions Made During the Derivations of Classic Dependencies for the Thermal Conductivity of Simple Systems

Appendix: Basic Assumptions Made During the Derivations of Classic Dependencies for the Thermal Conductivity of Simple Systems

Einstein [86], considering the thermal molecular motions in solids, proposed a simple formula for the frequency \(\nu\) of particles’ oscillations

$$\begin{aligned} \nu \sim \sqrt{\frac{\delta }{m\kappa _S}} \end{aligned}$$
(22)

based on arguments of dimensionality and the consideration of this process as dependent on the particle’s mass m, the inter-particle spatial separation \(\delta\) and the inter-particle forces, which can be estimated by the compressibility coefficient \(\kappa _S\) (note that Einstein did not specify the kind of compressibility but it should be the adiabatic compressibility when considering the oscillations within the frame of acoustic modes as well as in the context of the thermal conductivity). Estimation of the inter-particle distances from the density \(\rho \sim m/\delta ^3\) and the particle’s mass \(m=M/N_A\) expressed from the molar weight M and Avogadro’s number \(N_A\) leads to the formula

$$\begin{aligned} \nu \sim \left( \frac{N_A\rho }{M}\right) ^{1/3}u, \end{aligned}$$
(23)

where the thermodynamic definition of the speed of sound \(u=1/\sqrt{\rho \kappa _S}\) is used.

For estimation of the proportionality constant, Einstein considered [75] the simplified 3D lattice system of a central particle placed in its centre and interacting with 26 nearest neighbours. However, for the simplification, instead of pair-wise distances between points distributed in a cubic lattice, the isotropic interaction of the central particle with particles distributed on a spherical surface was considered. Consequently, the inter-particle distance \(\delta\) was introduced in such a way that it is equal to the radius of the mentioned sphere with the volume coordinated with volume of cubic-regularly packed particles derived from the macroscopic density:

$$\begin{aligned} \frac{4\pi }{3}\delta ^3=8\frac{M}{\rho N_a}. \end{aligned}$$
(24)

It is worth noting that such an approximation is even more suitable for the consideration of liquid rather than solids because of macroscopic isotropy of the former accompanied with the local order defined by the radial distribution function, i.e. by the consideration of the isotropic interaction of a central particle and its nearest neighbours forming the first coordination shell.

Respectively, considering small displacements x of the central particle as governed by elastic forces \(f=-(26/3)k_{\kappa }\Delta\) (i.e. Hooke’s law), where the angle averaging procedure was applied, and \(k_{\kappa }\) is the coefficient of linear elasticity, the frequency has the same form as known for the mass-spring harmonic oscillator

$$\begin{aligned} \nu =\frac{1}{2\pi }\sqrt{\frac{26}{3}k_{\kappa }\frac{N_a}{M}}. \end{aligned}$$
(25)

The coefficient of linear elasticity can be related to the adiabatic compressibility when the sound mode of oscillations equalising the change of elastic potential energy and the thermodynamic work per unit volume under the displacement \(\delta\), for which Eq. A3 was used, Einstein obtained

$$\begin{aligned} \nu =\frac{6^{1/2}}{2\pi }\left( \frac{\pi }{6}\right) ^{1/3} \left( \frac{\rho N_A}{M} \right) ^{1/3}\frac{1}{\sqrt{\kappa _S\rho }}. \end{aligned}$$
(26)

Einstein also attracts attention [86] to the need of comparing his formula with the frequency which follows from the Lindemann criterion [87], where this quantity is expressed via the melting temperature, molar weight and inter-particle separation, which also can be estimated from the density.

Note that recently there have been a number of works devoted to the prediction of the melting temperature of ionic liquids [88, 89]. Thus, it is worth investigating, how the frequencies determined from the extrapolation of experimental thermal conductivities down to the condition of solidifications are quantitatively related to the Lindemann criterion and does it have potential for predicting a reference point for the usage in complex with regressions like Eqs. 2 and  3.

While Einstein was interested in the deriving a formula for the frequency of the acoustic mode in solids, especially within frames of developing the theory of heat capacity, this molecular oscillation approach was applied to the thermal conductivity in liquids by Osida [46] who consider the thermal transport as originated from the exchange of energy during collisions of an molecule oscillating with the frequency \(\nu\) with surrounding ones. Assuming the mean energy of such a molecule equal to \(3k_BT\) (it combines translational and rotational motions), where \(k_B\) is Boltzmann’s constant and the temperature, respectively, and integrating over the angle between the direction of oscillatory motion and the direction of the heat flow as well as the mean distance \(\delta\) between the planes normal to the heat flow (separated by the typical distance between molecules), he obtained the expression

$$\begin{aligned} \lambda =\frac{4k_B\nu }{\delta }. \end{aligned}$$
(27)

Osida estimated the frequency from the Lindemann criterion for a number of molecular liquids and took inter-particle distance in the simplest form \(d=\left( M/(\rho N_A)\right) ^{1/3}\) declaring a reasonable correspondence to experimental data. He noted also that Eq. 27 can be transformed to the form used by Bridgman using the connection between \(\nu\) and the adiabatic compressibility derived by Einstein, and, respectively, the speed of sound, Eq. 23 but with the different numerical factor because Bridgman [45] considered more simplified physical picture of arranging of molecules in a simple cubic lattice with an average distance \(\delta\) between centres of molecules, and the average energy of a molecule \(2k_BT\) (one-dimensional motion, a half of the energy is considered as potential and half as kinetic); the speed of sound was used simply to define a time step of the one-dimensional heat flow transfer parallel to the lattice’s edges \(\delta t^{-1}=u/\delta\), and \(\delta ^2\) gives the area of surface crossed by the thermal flow that resulted in \(\lambda =2k_BTu\delta ^{-2}\).

Another detailed exploration of the vibrational theory of thermal compressibility was carried out by Horrocks and McLaughlin [37]. The general line of derivation is practically the same in Osida’s work and even within a more simplified geometric picture: the linear heat flow normal to planes corresponding the lattice arrangement of molecules. However, the isochoric heat capacity was introduced ab initio in a general form as governing local changes of thermal energy as well as the probability \({{\mathcal {P}}}^*\) that energy is transferred when two molecules collide. As a result, the formula

$$\begin{aligned} \lambda =2{\mathcal {P}}^*C_Vn_S\delta \nu , \end{aligned}$$
(28)

was obtained, where \(n_S\) is the number of molecules per unit area of a reference plane and the factor 2 takes into account that a molecule crosses the reference plane twice in every complete vibration. Under assumption of the cubic lattice, Eq. 28 reduces to the Osida’s form but with another numerical factor:

$$\begin{aligned} \lambda =2{\mathcal {P}}^*C_V\frac{\nu }{\delta }. \end{aligned}$$
(29)

More physically important feature during its derivation in the work [37] was the comparative estimation of the vibrational and convective contributions in molecular motions revealed the prevalence of the former at not so high temperatures that is in line with the modern phonon theory of liquid thermodynamics [64].

However, what is more significant, McLaughlin et al. proposed how to eliminate indefinite factors operating with isobaric [38] and isothermal processes [39] obtaining Eqs. 5 and 6. It should be pointed out that their calculations were carried out under assumption that \({\mathcal {P}}^*\), the factor connecting the density and the average inter-particle distance and the isochoric heat capacity \(C_V\) are constant.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Postnikov, E.B., Pikalov, I.Y. & Chora̧żewski, M. Thermal Conductivity of Ionic Liquids: Recent Challenges Facing Theory and Experiment. J Solution Chem 51, 1311–1333 (2022). https://doi.org/10.1007/s10953-022-01205-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01205-8

Keywords

Navigation