Skip to main content
Log in

Interactions of Ionic Surfactants with Aqueous Solutions of Tetraalkylammonium Cation-Based Ionic Liquids: Tensiometric and Viscometric Measurements

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The present work reports surface tension and viscosity studies of the cationic surfactant, DTAB (dodecyltrimethylammonium bromide) and the anionic surfactant, SDS (sodium dodecylsulphate) in 0.01 mol‧kg−1 aqueous solutions of the ionic liquids (ILs) tetraalkylammonium bromide (R4NBr), tetraalkylammonium nitrate (R4NNO3) and tetraalkylammonium acetate (R4NOAc) where alkyl (R) is propyl (Pr), butyl (Bu) or pentyl (Pen). Experimentally determined values of surface tension have been further analysed in terms of surface-active (interfacial) parameters including the surface excess at the air–water interface (\(\Gamma_{\max }\)), minimum area per surfactant molecule (\(A_{\min }\)), surface pressure at the CMC (\(\pi_{{{\text{cmc}}}}\)), efficiency of surfactant in reducing surface tension (\(pC_{20}\)) and adsorption at air/water interface relation to micellization (\({{CMC} \mathord{\left/ {\vphantom {{CMC} {C_{20} }}} \right. \kern-\nulldelimiterspace} {C_{20} }}\)). The thermodynamic parameters of micellization and adsorption viz. change in standard Gibbs free energy of adsorption (\(\Delta G_{{{\text{ad}}}}^{{\text{o}}}\)), change in standard free energy of micellization (\(\Delta G_{{\text{m}}}^{{\text{o}}}\)) and change in standard free energy of transfer (\(\Delta G_{{{\text{tr}}}}^{{\text{o}}}\)) for both DTAB and SDS have also been calculated. The viscometric data have been utilized to compute relative viscosity (\(\eta_{r}\)) and viscous relaxation time (\(\tau\)). All these parameters afford insight into structural rearrangement of amphiphilic molecules at the interface and the relative involvement of hydrophobic and electrostatic interactions between surfactant and IL molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Parmentier, D., Metz, S.J., Kroon, M.C.: Tetraalkylammonium oleate and linoleate based ionic liquids: promising extractants for metal salt. Green Chem. 15, 205–209 (2013)

    Article  CAS  Google Scholar 

  2. Rios, A.P., Fernandez, F.J.H., Lozano, L.J., Sanchez, S., Moreno, J.I., Godınez, C.: Removal of metal ions from aqueous solutions by extraction with ionic liquids. J. Chem. Eng. Data 55, 605–608 (2010)

    Article  Google Scholar 

  3. Han, X., Armstrong, D.W.: Ionic liquids in separations. Acc. Chem. Res. 40, 1079–1086 (2007)

    Article  CAS  PubMed  Google Scholar 

  4. Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127, 2398–2399 (2005)

    Article  CAS  PubMed  Google Scholar 

  5. Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interfac. Sci. 314, 236–241 (2007)

    Article  CAS  Google Scholar 

  6. Wang, G., Li, P., Du, Z., Wang, W., Li, G.: Surface activity and aggregation behavior of siloxane-based ionic liquids in aqueous solution. Langmuir 31, 8235–8242 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. Quinn, B.M., Ding, Z., Moulton, R., Bard, A.J.: Novel electrochemical studies of ionic liquids. Langmuir 18, 1734–1742 (2002)

    Article  CAS  Google Scholar 

  8. Sinha, S., Bahadur, P.: Effect of organic counter-ions on the surface activity, micellar formation and dye solubilization behaviour of cationic surfactants. Indian J. Chem. 41, 914–920 (2002)

    Google Scholar 

  9. Li, N., Zhang, S., Ma, H., Zheng, L.: Role of solubilized water in micelles formed by Triton X-100 in 1-butyl-3-methylimidazolium ionic liquid. Langmuir 26, 9315–9320 (2010)

    Article  CAS  PubMed  Google Scholar 

  10. Shi, L., Li, N., Zheng, L.: Aggregation behavior of long-chain N-aryl imidazolium bromide in a room temperature ionic liquid. J. Phys. Chem. C 115, 18295–18301 (2011)

    Article  CAS  Google Scholar 

  11. Wang, X., Wang, R., Zheng, Y., Sun, L., Yu, L., Jiao, J., Wang, R.: Interaction between zwitterionic surface activity ionic liquid and anionic surfactant: Na+-driven wormlike micelles. J. Phys. Chem. B 117, 1886–1895 (2013)

    Article  CAS  PubMed  Google Scholar 

  12. Sharma, R., Mahajan, S., Mahajan, R.K.: Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf. A 427, 62–75 (2013)

    Article  CAS  Google Scholar 

  13. Rao, V.G., Ghatak, C., Ghosh, S., Pramanik, R., Sarkar, S., Mandal, S., Sarkar, N.: Ionic liquid-induced changes in properties of aqueous cetyltrimethylammonium bromide: a comparative study of two protic ionic liquids with different anions. J. Phys. Chem. B 115, 3828–3837 (2011)

    Article  CAS  PubMed  Google Scholar 

  14. Javadian, S., Ruhi, V., Shahir, A.A., Heydari, A., Akbari, J.: Imidazolium-based ionic liquids as modulators of physicochemical properties and nanostructures of CTAB in aqueous solution: the effect of alkyl chain length, hydrogen bonding capacity, and anion type. Ind. Eng. Chem. Res. 52, 15838–15846 (2013)

    Article  CAS  Google Scholar 

  15. Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., Shahir, A.A.: Modifying effect of imidazolium-based ionic liquids on surface activity and self-assembled nanostructures of sodium dodecyl sulfate. J. Phys. Chem. B 118, 4140–4150 (2014)

    Article  CAS  PubMed  Google Scholar 

  16. Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., Danino, D.: Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J. Colloid Interfac. Sci. 342, 83–92 (2010)

    Article  CAS  Google Scholar 

  17. Mahajan, R.K., Sharma, R.: Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media. J. Colloid Interfac. Sci. 363, 275–283 (2011)

    Article  CAS  Google Scholar 

  18. Pal, A., Chaudhary, S.: Ionic liquid induced alterations in the physicochemical properties of aqueous solutions of sodium dodecylsulfate (SDS). Colloids Surf. A 4305, 8–64 (2013)

    Google Scholar 

  19. Bansal, S., Kaur, N., Chaudhary, G.R., Mehta, S.K., Ahluwalia, A.S.: Physiochemical properties of new formulations of 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide with Tritons. J. Chem. Eng. Data 59, 3988–3999 (2014)

    Article  CAS  Google Scholar 

  20. Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., Heenan, R.: Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir 27, 4563–4571 (2011)

    Article  CAS  PubMed  Google Scholar 

  21. Wei, Z., Wei, X., Wang, X., Wang, Z., Liu, J.: Ionic liquid crystals of quaternary ammonium salts with a 2-hydroxypropoxy insertion group. J. Mater. Chem. 21, 6875–6882 (2011)

    Article  CAS  Google Scholar 

  22. Docherty, K.M., Kulpa, C.F.: Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7, 185–189 (2005)

    Article  CAS  Google Scholar 

  23. Eike, D.M., Brennecke, J.F., Maginn, E.: Predicting melting points of quaternary ammonium ionic liquids. Green Chem. 5, 323–328 (2003)

    Article  CAS  Google Scholar 

  24. Pernak, J., Smiglak, M., Griffin, S.T., Hough, W.L., Wilson, T.B., Pernak, A., Matejuk, J.Z., Fojutowski, A., Kita, K., Rogers, R.D.: Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem. 8, 798–806 (2006)

    Article  CAS  Google Scholar 

  25. Chauhan, S., Kaur, M., Kumar, K., Chauhan, M.S.: Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium. J. Chem. Thermodyn. 78, 175–181 (2014)

    Article  CAS  Google Scholar 

  26. Chauhan, S., Kaur, M., Rana, D.S., Chauhan, M.S.: Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts. J. Chem. Eng. Data 61, 3770–3778 (2016)

    Article  CAS  Google Scholar 

  27. Chauhan, S., Kaur, M.: Modulation of aggregation behaviour of anionic surfactant in the presence of aqueous quaternary ammonium salts. J. Surf. Deterg. 20, 599–607 (2017)

    Article  CAS  Google Scholar 

  28. Chauhan, S., Kaur, M., Singh, K., Chauhan, M.S., Kohli, P.: Micellar and antimicrobial activities of ionic surfactants in aqueous solutions of synthesized tetraalkylammonium based ionic liquids. Colloids Surf. A 535, 232–241 (2017)

    Article  CAS  Google Scholar 

  29. Singh, M.: A simple instrument for measuring the surface tension and viscosity of liquids. Instrum. Exp. Tech. 48, 270–271 (2005)

    Article  CAS  Google Scholar 

  30. Stairs, R.A., Rispin, W.T., Makhija, R.C.: Surface tension of some non-aqueous salt solutions. Can. J. Chem. 48, 2755–2762 (1970)

    Article  CAS  Google Scholar 

  31. Lebel, R.G., Goring, D.A.I.: Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide. J. Chem. Eng. Data 7, 100–101 (1962)

    Article  CAS  Google Scholar 

  32. Korson, L., Hansen, W.D., Miller, F.J.: Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969)

    Article  CAS  Google Scholar 

  33. Besbes, R., Ouerfelli, N., Latrous, H.: Density, dynamic viscosity, and derived properties of binary mixtures of 1,4 dioxane with water at T = 298.15 K. J. Mol. Liq. 145, 1–4 (2009)

    Article  CAS  Google Scholar 

  34. Naqvi, A.Z., Al–dahbali, G.A., Akram, M.: Adsorption and micellization behavior of cationic surfactants (gemini and conventional)—amphiphilic drug systems. J. Solution Chem. 42, 172–189 (2013)

    Article  CAS  Google Scholar 

  35. Rub, M.A., Sheikh, M.S., Asiri, A.M., Azum, N., Khan, A., Khan, A.A.P., Khan, S.B.: Aggregation behavior of amphiphilic drug and bile salt mixtures at different compositions and temperatures. J. Chem. Thermodyn. 64, 28–39 (2013)

    Article  Google Scholar 

  36. Chauhan, S., Sharma, V., Singh, K., Chauhan, M.S., Singh, K.S.: Influence of lactose on the micellar behavior and surface activity of bile salts as revealed through fluorescence and surface tension studies at varying temperatures. J. Mol. Liq. 222, 67–76 (2016)

    Article  CAS  Google Scholar 

  37. Rao, K.S., Gehlot, P.S., Gupta, H., Drechsler, M., Kumar, A.: Sodium bromide induced micelle to vesicle transitions of newly synthesized anionic surface active ionic liquids based on dodecylbenzenesulfonate. J. Phys. Chem. B 119, 4263–4274 (2015)

    Article  CAS  PubMed  Google Scholar 

  38. Sadeghi, R., Golabiazar, R.: Surface and micellar properties of ionic liquid 1-Dodecyl-3-methylimidazolium bromide in aqueous solution in the absence and presence of a series of organic electrolytes. J. Chem. Eng. Data 60, 1063–1071 (2015)

    Article  CAS  Google Scholar 

  39. Patel, J., Varade, D., Bahadur, P.: Effect of tetraalkylammonium bromide on the micellar behavior of ionic and non-ionic surfactants. Indian J. Chem. 43, 715–721 (2004)

    Google Scholar 

  40. Das, C., Das, B.: Effect of tetraalkylammonium salts on the micellar behavior of lithium dodecyl sulfate: a conductometric and tensiometric study. J. Mol. Liq. 137, 152–158 (2008)

    Article  CAS  Google Scholar 

  41. Behera, K., Pandey, S.: Modulating properties of aqueous sodium dodecyl sulfate by adding hydrophobic ionic liquid. J. Colloid Interfac. Sci. 316, 803–814 (2007)

    Article  CAS  Google Scholar 

  42. Ali, A., Ansari, N.H.: Studies on the effect of amino acids/peptide on micellization of sds at different temperatures. J. Surf. Deterg. 13, 441–449 (2010)

    Article  CAS  Google Scholar 

  43. Hedin, N., Furo, I., Eriksson, P.O.: Fast diffusion of the Cl ion in the headgroup region of an oppositely charged micelle. A 35Cl NMR spin relaxation study. J. Phys. Chem. B 104, 8544–8547 (2000)

    Article  CAS  Google Scholar 

  44. Das, D., Ismail, K.: Aggregation and adsorption properties of sodium dodecyl sulfate in water–acetamide mixtures. J. Colloid Interfac. Sci. 327, 198–203 (2008)

    Article  CAS  Google Scholar 

  45. Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta. 428, 147–155 (2005)

    Article  CAS  Google Scholar 

  46. Maiti, K., Mitra, D., Guha, S., Moulik, S.P.: Salt effect on self-aggregation of sodium dodecylsulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB): physicochemical correlation and assessment in the light of Hofmeister (lyotropic) effect. J. Mol. Liq. 146, 44–51 (2009)

    Article  CAS  Google Scholar 

  47. Luczak, J., Markiewicz, M., Thoming, J., Hupka, J., Jumgnickel, C.: Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions. J. Colloid Interfac. Sci. 362, 415–422 (2011)

    Article  CAS  Google Scholar 

  48. Zhou, Q., Rosen, M.: Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19, 4555–4562 (2003)

    Article  CAS  Google Scholar 

  49. Chauhan, S., Sharma, V.: Sharma, K: Maltodextrin–SDS interactions: volumetric, viscometric and surface tension study. Fluid Phase. Equilib. 354, 236–244 (2013)

    Article  CAS  Google Scholar 

  50. Kumar, K., Chauhan, S.: Surface tension and UV–visible investigations of aggregation and adsorption behavior of NaC and NaDC in water–amino acid mixtures. Fluid Phase Equilib. 394, 165–174 (2015)

    Article  CAS  Google Scholar 

  51. Ruiz, C.C., Hierrezuelo, J.M., Molina Boliva, J.A.: Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide. Colloid Polym. Sci. 286, 1281–1289 (2008)

    Article  Google Scholar 

  52. Chakraborty, T., Ghosh, S., Moulik, S.P.: Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: Cetyl Pyridinium chloride (CPC), cetyl trimethyl ammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) derived system. J. Phys. Chem. B 109, 14813–14823 (2005)

    Article  CAS  PubMed  Google Scholar 

  53. Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y., Shaban, S.M.: Characterization, surface properties and biological activity of new prepared cationic surfactants. J. Ind. Eng. Chem. 20, 1633–1640 (2014)

    Article  CAS  Google Scholar 

  54. Jiao, J., Zhang, Y., Fang, L., Yu, L., Sun, L., Wang, R., Cheng, N.: Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution. J. Colloid Interfac. Sci. 402, 139–145 (2013)

    Article  CAS  Google Scholar 

  55. Wang, X., Yan, F., Li, Z., Zhang, L., Zhao, S., Ana, J., Yu, J.: Synthesis and surface properties of several nonionic–anionic surfactants with straight chain alkyl-benzyl hydrophobic group. Colloids Surf. A 302, 532–539 (2007)

    Article  CAS  Google Scholar 

  56. Patial, P., Shaheen, A., Ahmad, I.: Synthesis, surface active and thermal properties of novel imidazolium cationic monomeric surfactants. J. Ind. Eng. Chem. 20, 4267–4275 (2014)

    Article  CAS  Google Scholar 

  57. Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)

    Article  CAS  Google Scholar 

  58. Gill, D.S., Singh, J., Singh, P., Rehani, S.K., Khajura, R.: Shear relaxation times of some binary liquid systems and electrolyte solutions. Indian J. Chem. A 37, 45–48 (1998)

    Google Scholar 

  59. Iqbal, M.J., Chaudhary, M.A.: Volumetric and viscometric studies of antidepressant drugs in aqueous medium at different temperatures. J. Chem. Eng. Data 54, 2772–2776 (2009)

    Article  CAS  Google Scholar 

  60. Kaur, I., Kumar, H.: Viscometric measurements of L-serine with antibacterial drugs ampicillin and amoxicillin at different temperatures: (30515 to 31515) K. J. Mol. Liq. 177, 49–53 (2012)

    Article  Google Scholar 

  61. Naik, A.B.: Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures. Indian J. Pure Appl. Phys. 53, 27–34 (2015)

    Google Scholar 

  62. Bakshi, M.S., Kaur, I.: Head-group-modification-controlled mixing behavior of binary cationic surfactants: conductometric, viscometric, and NMR studies. Colloid Polym. Sci. 281, 935–944 (2003)

    Article  CAS  Google Scholar 

  63. Sharma, K., Chauhan, S., Priya, B.: Extended studies on molecular interactions of SDBS and DTAB in aqueous solutions of amino acid at T = 293.15–313.15 K. J. Mol. Liq. 222, 407–414 (2016)

    Article  CAS  Google Scholar 

  64. George, J., Nair, S.M., Sreejith, L.: Interactions of sodium dodecyl benzene sulfonate and sodium dodecyl sulfate with gelatin: a comparison. J. Surfact. Deterg. 11, 29–32 (2008)

    Article  CAS  Google Scholar 

  65. Chauhan, S., Chaudhary, P., Sharma, K., Kumar, K.: Kiran: Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug. Chem. Pap. 67, 1442–1452 (2013)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Maninder Kaur thanks UGC, New Delhi, for the award of Senior Research Fellowship (No. F.17-40/2008(SA-1) dated on 31.07.2014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maninder Kaur.

Ethics declarations

Competing interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 182 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chauhan, S., Kaur, M. Interactions of Ionic Surfactants with Aqueous Solutions of Tetraalkylammonium Cation-Based Ionic Liquids: Tensiometric and Viscometric Measurements. J Solution Chem 51, 1483–1507 (2022). https://doi.org/10.1007/s10953-022-01203-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01203-w

Keywords

Navigation