Abstract
The present work reports surface tension and viscosity studies of the cationic surfactant, DTAB (dodecyltrimethylammonium bromide) and the anionic surfactant, SDS (sodium dodecylsulphate) in 0.01 mol‧kg−1 aqueous solutions of the ionic liquids (ILs) tetraalkylammonium bromide (R4NBr), tetraalkylammonium nitrate (R4NNO3) and tetraalkylammonium acetate (R4NOAc) where alkyl (R) is propyl (Pr), butyl (Bu) or pentyl (Pen). Experimentally determined values of surface tension have been further analysed in terms of surface-active (interfacial) parameters including the surface excess at the air–water interface (\(\Gamma_{\max }\)), minimum area per surfactant molecule (\(A_{\min }\)), surface pressure at the CMC (\(\pi_{{{\text{cmc}}}}\)), efficiency of surfactant in reducing surface tension (\(pC_{20}\)) and adsorption at air/water interface relation to micellization (\({{CMC} \mathord{\left/ {\vphantom {{CMC} {C_{20} }}} \right. \kern-\nulldelimiterspace} {C_{20} }}\)). The thermodynamic parameters of micellization and adsorption viz. change in standard Gibbs free energy of adsorption (\(\Delta G_{{{\text{ad}}}}^{{\text{o}}}\)), change in standard free energy of micellization (\(\Delta G_{{\text{m}}}^{{\text{o}}}\)) and change in standard free energy of transfer (\(\Delta G_{{{\text{tr}}}}^{{\text{o}}}\)) for both DTAB and SDS have also been calculated. The viscometric data have been utilized to compute relative viscosity (\(\eta_{r}\)) and viscous relaxation time (\(\tau\)). All these parameters afford insight into structural rearrangement of amphiphilic molecules at the interface and the relative involvement of hydrophobic and electrostatic interactions between surfactant and IL molecules.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Parmentier, D., Metz, S.J., Kroon, M.C.: Tetraalkylammonium oleate and linoleate based ionic liquids: promising extractants for metal salt. Green Chem. 15, 205–209 (2013)
Rios, A.P., Fernandez, F.J.H., Lozano, L.J., Sanchez, S., Moreno, J.I., Godınez, C.: Removal of metal ions from aqueous solutions by extraction with ionic liquids. J. Chem. Eng. Data 55, 605–608 (2010)
Han, X., Armstrong, D.W.: Ionic liquids in separations. Acc. Chem. Res. 40, 1079–1086 (2007)
Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127, 2398–2399 (2005)
Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interfac. Sci. 314, 236–241 (2007)
Wang, G., Li, P., Du, Z., Wang, W., Li, G.: Surface activity and aggregation behavior of siloxane-based ionic liquids in aqueous solution. Langmuir 31, 8235–8242 (2015)
Quinn, B.M., Ding, Z., Moulton, R., Bard, A.J.: Novel electrochemical studies of ionic liquids. Langmuir 18, 1734–1742 (2002)
Sinha, S., Bahadur, P.: Effect of organic counter-ions on the surface activity, micellar formation and dye solubilization behaviour of cationic surfactants. Indian J. Chem. 41, 914–920 (2002)
Li, N., Zhang, S., Ma, H., Zheng, L.: Role of solubilized water in micelles formed by Triton X-100 in 1-butyl-3-methylimidazolium ionic liquid. Langmuir 26, 9315–9320 (2010)
Shi, L., Li, N., Zheng, L.: Aggregation behavior of long-chain N-aryl imidazolium bromide in a room temperature ionic liquid. J. Phys. Chem. C 115, 18295–18301 (2011)
Wang, X., Wang, R., Zheng, Y., Sun, L., Yu, L., Jiao, J., Wang, R.: Interaction between zwitterionic surface activity ionic liquid and anionic surfactant: Na+-driven wormlike micelles. J. Phys. Chem. B 117, 1886–1895 (2013)
Sharma, R., Mahajan, S., Mahajan, R.K.: Surface adsorption and mixed micelle formation of surface active ionic liquid in cationic surfactants: conductivity, surface tension, fluorescence and NMR studies. Colloids Surf. A 427, 62–75 (2013)
Rao, V.G., Ghatak, C., Ghosh, S., Pramanik, R., Sarkar, S., Mandal, S., Sarkar, N.: Ionic liquid-induced changes in properties of aqueous cetyltrimethylammonium bromide: a comparative study of two protic ionic liquids with different anions. J. Phys. Chem. B 115, 3828–3837 (2011)
Javadian, S., Ruhi, V., Shahir, A.A., Heydari, A., Akbari, J.: Imidazolium-based ionic liquids as modulators of physicochemical properties and nanostructures of CTAB in aqueous solution: the effect of alkyl chain length, hydrogen bonding capacity, and anion type. Ind. Eng. Chem. Res. 52, 15838–15846 (2013)
Javadian, S., Nasiri, F., Heydari, A., Yousefi, A., Shahir, A.A.: Modifying effect of imidazolium-based ionic liquids on surface activity and self-assembled nanostructures of sodium dodecyl sulfate. J. Phys. Chem. B 118, 4140–4150 (2014)
Abezgauz, L., Kuperkar, K., Hassan, P.A., Ramon, O., Bahadur, P., Danino, D.: Effect of Hofmeister anions on micellization and micellar growth of the surfactant cetylpyridinium chloride. J. Colloid Interfac. Sci. 342, 83–92 (2010)
Mahajan, R.K., Sharma, R.: Analysis of interfacial and micellar behavior of sodium dioctyl sulphosuccinate salt (AOT) with zwitterionic surfactants in aqueous media. J. Colloid Interfac. Sci. 363, 275–283 (2011)
Pal, A., Chaudhary, S.: Ionic liquid induced alterations in the physicochemical properties of aqueous solutions of sodium dodecylsulfate (SDS). Colloids Surf. A 4305, 8–64 (2013)
Bansal, S., Kaur, N., Chaudhary, G.R., Mehta, S.K., Ahluwalia, A.S.: Physiochemical properties of new formulations of 1-ethyl-3- methylimidazolium bis(trifluoromethylsulfonyl)imide with Tritons. J. Chem. Eng. Data 59, 3988–3999 (2014)
Brown, P., Butts, C., Dyer, R., Eastoe, J., Grillo, I., Guittard, F., Rogers, S., Heenan, R.: Anionic surfactants and surfactant ionic liquids with quaternary ammonium counterions. Langmuir 27, 4563–4571 (2011)
Wei, Z., Wei, X., Wang, X., Wang, Z., Liu, J.: Ionic liquid crystals of quaternary ammonium salts with a 2-hydroxypropoxy insertion group. J. Mater. Chem. 21, 6875–6882 (2011)
Docherty, K.M., Kulpa, C.F.: Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquids. Green Chem. 7, 185–189 (2005)
Eike, D.M., Brennecke, J.F., Maginn, E.: Predicting melting points of quaternary ammonium ionic liquids. Green Chem. 5, 323–328 (2003)
Pernak, J., Smiglak, M., Griffin, S.T., Hough, W.L., Wilson, T.B., Pernak, A., Matejuk, J.Z., Fojutowski, A., Kita, K., Rogers, R.D.: Long alkyl chain quaternary ammonium-based ionic liquids and potential applications. Green Chem. 8, 798–806 (2006)
Chauhan, S., Kaur, M., Kumar, K., Chauhan, M.S.: Study of the effect of electrolyte and temperature on the critical micelle concentration of dodecyltrimethylammonium bromide in aqueous medium. J. Chem. Thermodyn. 78, 175–181 (2014)
Chauhan, S., Kaur, M., Rana, D.S., Chauhan, M.S.: Volumetric analysis of structural changes of cationic micelles in the presence of quaternary ammonium salts. J. Chem. Eng. Data 61, 3770–3778 (2016)
Chauhan, S., Kaur, M.: Modulation of aggregation behaviour of anionic surfactant in the presence of aqueous quaternary ammonium salts. J. Surf. Deterg. 20, 599–607 (2017)
Chauhan, S., Kaur, M., Singh, K., Chauhan, M.S., Kohli, P.: Micellar and antimicrobial activities of ionic surfactants in aqueous solutions of synthesized tetraalkylammonium based ionic liquids. Colloids Surf. A 535, 232–241 (2017)
Singh, M.: A simple instrument for measuring the surface tension and viscosity of liquids. Instrum. Exp. Tech. 48, 270–271 (2005)
Stairs, R.A., Rispin, W.T., Makhija, R.C.: Surface tension of some non-aqueous salt solutions. Can. J. Chem. 48, 2755–2762 (1970)
Lebel, R.G., Goring, D.A.I.: Density, viscosity, refractive index, and hygroscopicity of mixtures of water and dimethyl sulfoxide. J. Chem. Eng. Data 7, 100–101 (1962)
Korson, L., Hansen, W.D., Miller, F.J.: Viscosity of water at various temperatures. J. Phys. Chem. 73, 34–39 (1969)
Besbes, R., Ouerfelli, N., Latrous, H.: Density, dynamic viscosity, and derived properties of binary mixtures of 1,4 dioxane with water at T = 298.15 K. J. Mol. Liq. 145, 1–4 (2009)
Naqvi, A.Z., Al–dahbali, G.A., Akram, M.: Adsorption and micellization behavior of cationic surfactants (gemini and conventional)—amphiphilic drug systems. J. Solution Chem. 42, 172–189 (2013)
Rub, M.A., Sheikh, M.S., Asiri, A.M., Azum, N., Khan, A., Khan, A.A.P., Khan, S.B.: Aggregation behavior of amphiphilic drug and bile salt mixtures at different compositions and temperatures. J. Chem. Thermodyn. 64, 28–39 (2013)
Chauhan, S., Sharma, V., Singh, K., Chauhan, M.S., Singh, K.S.: Influence of lactose on the micellar behavior and surface activity of bile salts as revealed through fluorescence and surface tension studies at varying temperatures. J. Mol. Liq. 222, 67–76 (2016)
Rao, K.S., Gehlot, P.S., Gupta, H., Drechsler, M., Kumar, A.: Sodium bromide induced micelle to vesicle transitions of newly synthesized anionic surface active ionic liquids based on dodecylbenzenesulfonate. J. Phys. Chem. B 119, 4263–4274 (2015)
Sadeghi, R., Golabiazar, R.: Surface and micellar properties of ionic liquid 1-Dodecyl-3-methylimidazolium bromide in aqueous solution in the absence and presence of a series of organic electrolytes. J. Chem. Eng. Data 60, 1063–1071 (2015)
Patel, J., Varade, D., Bahadur, P.: Effect of tetraalkylammonium bromide on the micellar behavior of ionic and non-ionic surfactants. Indian J. Chem. 43, 715–721 (2004)
Das, C., Das, B.: Effect of tetraalkylammonium salts on the micellar behavior of lithium dodecyl sulfate: a conductometric and tensiometric study. J. Mol. Liq. 137, 152–158 (2008)
Behera, K., Pandey, S.: Modulating properties of aqueous sodium dodecyl sulfate by adding hydrophobic ionic liquid. J. Colloid Interfac. Sci. 316, 803–814 (2007)
Ali, A., Ansari, N.H.: Studies on the effect of amino acids/peptide on micellization of sds at different temperatures. J. Surf. Deterg. 13, 441–449 (2010)
Hedin, N., Furo, I., Eriksson, P.O.: Fast diffusion of the Cl− ion in the headgroup region of an oppositely charged micelle. A 35Cl NMR spin relaxation study. J. Phys. Chem. B 104, 8544–8547 (2000)
Das, D., Ismail, K.: Aggregation and adsorption properties of sodium dodecyl sulfate in water–acetamide mixtures. J. Colloid Interfac. Sci. 327, 198–203 (2008)
Mata, J., Varade, D., Bahadur, P.: Aggregation behavior of quaternary salt based cationic surfactants. Thermochim Acta. 428, 147–155 (2005)
Maiti, K., Mitra, D., Guha, S., Moulik, S.P.: Salt effect on self-aggregation of sodium dodecylsulfate (SDS) and tetradecyltrimethylammonium bromide (TTAB): physicochemical correlation and assessment in the light of Hofmeister (lyotropic) effect. J. Mol. Liq. 146, 44–51 (2009)
Luczak, J., Markiewicz, M., Thoming, J., Hupka, J., Jumgnickel, C.: Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions. J. Colloid Interfac. Sci. 362, 415–422 (2011)
Zhou, Q., Rosen, M.: Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19, 4555–4562 (2003)
Chauhan, S., Sharma, V.: Sharma, K: Maltodextrin–SDS interactions: volumetric, viscometric and surface tension study. Fluid Phase. Equilib. 354, 236–244 (2013)
Kumar, K., Chauhan, S.: Surface tension and UV–visible investigations of aggregation and adsorption behavior of NaC and NaDC in water–amino acid mixtures. Fluid Phase Equilib. 394, 165–174 (2015)
Ruiz, C.C., Hierrezuelo, J.M., Molina Boliva, J.A.: Effect of glycine on the surface activity and micellar properties of N-decanoyl-N-methylglucamide. Colloid Polym. Sci. 286, 1281–1289 (2008)
Chakraborty, T., Ghosh, S., Moulik, S.P.: Micellization and related behavior of binary and ternary surfactant mixtures in aqueous medium: Cetyl Pyridinium chloride (CPC), cetyl trimethyl ammonium bromide (CTAB), and polyoxyethylene (10) cetyl ether (Brij-56) derived system. J. Phys. Chem. B 109, 14813–14823 (2005)
Aiad, I., El-Sukkary, M.M., Soliman, E.A., El-Awady, M.Y., Shaban, S.M.: Characterization, surface properties and biological activity of new prepared cationic surfactants. J. Ind. Eng. Chem. 20, 1633–1640 (2014)
Jiao, J., Zhang, Y., Fang, L., Yu, L., Sun, L., Wang, R., Cheng, N.: Electrolyte effect on the aggregation behavior of 1-butyl-3-methylimidazolium dodecylsulfate in aqueous solution. J. Colloid Interfac. Sci. 402, 139–145 (2013)
Wang, X., Yan, F., Li, Z., Zhang, L., Zhao, S., Ana, J., Yu, J.: Synthesis and surface properties of several nonionic–anionic surfactants with straight chain alkyl-benzyl hydrophobic group. Colloids Surf. A 302, 532–539 (2007)
Patial, P., Shaheen, A., Ahmad, I.: Synthesis, surface active and thermal properties of novel imidazolium cationic monomeric surfactants. J. Ind. Eng. Chem. 20, 4267–4275 (2014)
Dhondge, S.S., Zodape, S.P., Parwate, D.V.: Volumetric and viscometric studies of some drugs in aqueous solutions at different temperatures. J. Chem. Thermodyn. 48, 207–212 (2012)
Gill, D.S., Singh, J., Singh, P., Rehani, S.K., Khajura, R.: Shear relaxation times of some binary liquid systems and electrolyte solutions. Indian J. Chem. A 37, 45–48 (1998)
Iqbal, M.J., Chaudhary, M.A.: Volumetric and viscometric studies of antidepressant drugs in aqueous medium at different temperatures. J. Chem. Eng. Data 54, 2772–2776 (2009)
Kaur, I., Kumar, H.: Viscometric measurements of L-serine with antibacterial drugs ampicillin and amoxicillin at different temperatures: (30515 to 31515) K. J. Mol. Liq. 177, 49–53 (2012)
Naik, A.B.: Densities, viscosities, speed of sound and some acoustical parameter studies of substituted pyrazoline compounds at different temperatures. Indian J. Pure Appl. Phys. 53, 27–34 (2015)
Bakshi, M.S., Kaur, I.: Head-group-modification-controlled mixing behavior of binary cationic surfactants: conductometric, viscometric, and NMR studies. Colloid Polym. Sci. 281, 935–944 (2003)
Sharma, K., Chauhan, S., Priya, B.: Extended studies on molecular interactions of SDBS and DTAB in aqueous solutions of amino acid at T = 293.15–313.15 K. J. Mol. Liq. 222, 407–414 (2016)
George, J., Nair, S.M., Sreejith, L.: Interactions of sodium dodecyl benzene sulfonate and sodium dodecyl sulfate with gelatin: a comparison. J. Surfact. Deterg. 11, 29–32 (2008)
Chauhan, S., Chaudhary, P., Sharma, K., Kumar, K.: Kiran: Temperature-dependent volumetric and viscometric properties of amino acids in aqueous solutions of an antibiotic drug. Chem. Pap. 67, 1442–1452 (2013)
Acknowledgements
Maninder Kaur thanks UGC, New Delhi, for the award of Senior Research Fellowship (No. F.17-40/2008(SA-1) dated on 31.07.2014).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interest
The authors declare no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Chauhan, S., Kaur, M. Interactions of Ionic Surfactants with Aqueous Solutions of Tetraalkylammonium Cation-Based Ionic Liquids: Tensiometric and Viscometric Measurements. J Solution Chem 51, 1483–1507 (2022). https://doi.org/10.1007/s10953-022-01203-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-022-01203-w