Abstract
To quantitatively describe the kind of interaction between ion and solvent, it is convenient to use the concept of negative or positive solvation. We have established earlier that diffusion displacement distance (\(\overline{d}\)) of an ion correlates with its solvation type. The ion is solvated positively if the average \(\overline{d}\) value exceeds the crystallographic (structural) radius of an ion \(r_i\); otherwise, ion solvation is negative. In this paper, we have estimated the length, time and velocity of ion diffusion displacement (hop) for singly charged ions \(\text{Li}^+\), \(\text{Na}^+\), \(\text{K}^+\), \(\text{Rb}^+\), \(\text{Cs}^+\), \(\text{Me}_4\text{N}^+\), \(\text{Et}_4\text{N}^+\), \(\text{Bu}_4\text{N}^+\), \(\text{F}^-\), \(\text{Cl}^-\), \(\text{Br}^-\), \(\text {BPh}_{4}^{-}\) over the temperature range from 273.15 K to 473.15 K and for ions \(\text{Pr}_4\text{N}^+\), \(\text{I}^-\), \(\text {NO}_{3}^{-}\), \(\text {ClO}_{4}^{-}\) at 298.15 K in ethylene glycol. The fact of the negative solvation of almost all ions studied (except \(\text{Li}^+\), \(\text{Na}^+\), \(\text{F}^-\)) in ethylene glycol has been established for the first time. It has been shown that \(\text{Me}_4\text{N}^+\) ion has turned out solvated solvophilically in EG as well as in water while ions \(\text{Et}_4\text{N}^+\), \(\text{Bu}_4\text{N}^+,\) and \(\text {BPh}_{4}^{-}\) appeared to be solvated solvophobically. We have estimated the temperature of transition \(T_\text {tr}\) (from negative to positive ion solvation) for \(\text{K}^+\) and \(\text{Rb}^+\) ions. It physically corresponds to the absence of solvation of the ion (\(\overline{d}=r_i\)).
Similar content being viewed by others
References
Krestov, G.A.: Termodinamika ionnykh processov v rastvorakh. Khimiya, Leningrad (1984)
Samoilov, O.Y.: Struktura vodnyh rastvorov jelektrolitov i gidratacija ionov. USSR Academic of Sciences Publications, Moscow (1957)
Bakeev, M.I.: Osnovy teorii gidratacii i rastvorenija solej. Nauka, Alma-Ata (1990)
Bulavin, V., Vyunyk, I., Lazareva, Y.: Diffusion and microscopic characteristics of singly charged ion transfer in extremely diluted aqueous solutions. Ukr. J. Phys. 62(9), 769–778 (2017)
Rodnikova, M., Agayan, G., Balabaev, N.: Description of the spatial networks of hydrogen bonds in liquids by topological methods. J. Mol. Liq. 283, 374–379 (2019). https://doi.org/10.1016/j.molliq.2019.03.090
Marcus, Y.: Are ionic stokes radii of any use? J. Solution Chem. 41(11), 2082–2090 (2012). https://doi.org/10.1007/s10953-012-9922-4
Kuznetsova, E.M.: Interpretacija ionnyh radiusov stoksa v rastvorah jelektrolitov. Zh. Fizich. Khim. 79, 1321–1324 (2005)
Bulavin, V.I., V’yunyk, I.M., Kramarenko, A.V., Rusinov, A.I., Minakov, V.A.: Blizhnjaja sol’vatacija ionov tetraalkilammonija v jetilenglikole i v vode. Visnyk Nacional’nogo tehnychnogo universytetu “KhPI” pp. 63–58 (2019). http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/42597/1/vestnik_KhPI_2019_2_CCTE_Bulavin_Blizhnyaya.pdf
Kessler, I.M., Zaitcev, A.L.: Solvofobnye effekty. Teoriia, eksperiment, praktika. Khimiia, Leningrad (1989)
Wolynes, P.G.: Theory of solvated ion dynamics. J. Chem. Phys. 68(2), 473–483 (1978)
Evans, D.F., Tominaga, T., Hubbard, J.B., Wolynes, P.G.: Ionic mobility. Theory meets experiment. J. Phys. Chem. 83(20), 2669–2677 (1979). https://doi.org/10.1021/j100483a025
Ueno, M., Tsuchihashi, N., Shimizu, K.: Solvent isotope effect on mobilities of potassium and chloride ions in water at high pressure. iii. a high temperature study. J. Chem. Phys. 92(4), 2548–2552 (1990). https://doi.org/10.1063/1.457947
Bulavin, V.I., Vunnik, I.N., Kramarenko, A.V.: Kinetic solvation and electrical conductance of proton in infinitely diluted solutions of hydrogen halides in primary alcohols and in water: influence of temperature and solvent. J Mol. Liq. 242, 1296–1309 (2017). https://doi.org/10.1016/j.molliq.2017.07.031
Rodnikova, M.N.: Prostranstvennaja setka vodorodnyh svjazej v zhidkostjah i rastvorah. In: Sbornik izbrannyh trudov IV Mezhdunarodnogo Kongressa “Slabye i sverhslabye polja i izluchenija v biologii i medicine”, pp. 100–108 (2006). http://www.biophys.ru/archive/congress2006/pro-p100.pdf
Crickard, K., Skinner, J.F.: Negative viscosity b coefficients in nonaqueous solvents. J. Phys. Chem. 73(6), 2060–2062 (1969). https://doi.org/10.1021/j100726a072
Yergin, J.V.: Magnitnye svojstva i struktura rastvorov jelektrolitov. Nauka, Moscow (1983)
Kalugin, O.N., Lebed, A.V., Vyunnik, I.N.: Properties of 1–1 electrolytes solutions in ethylene glycol at temperatures from 5 to 175\(^\circ\)C. Part 2. Limiting ion conductances and ion-molecule interactions. J. Chem. Soc. Faraday Trans. 94, 2103–2107 (1998). https://doi.org/10.1039/A802735H
Fialkov, Y.Y., Grishchenko, V.F.: Jelektrovydelenie metallov iz nevodnykh rastvorov. Naukova Dumka, Kiev (1985)
Lebed, V., Kalugin, A.N., Vyunnik, O.N.: Properties of 1–1 electrolytes solutions in ethylene glycol at temperatures from 5 to 175\(^\circ\)C Part 1: Conductance measurements and experimental data treatment. J. Chem. Soc. Faraday Trans. 94, 2097–2101 (1998). https://doi.org/10.1039/A802731E
Marcus, Y.: Ions in Solution and their Solvation. Wiley, Hoboken (2015)
Krumgalz, B.S.: Dimensions of tetra-alkyl(aryl)onium ions. J. Chem. Soc. Faraday Trans. 1(78), 437–449 (1982). https://doi.org/10.1039/F19827800437
Bulavin, V.I., V’yunyk, I.M., Kramarenko, A.V., Rusinov, A.I.: Osoblyvosti vstanovlennia blyzhnoi solvatatsii ioniv tetraalkilamoniiu v rozchynnykakh z prostorovoiu sitkoiu H-zviazkiv. Visnyk Nacional’nogo tehnychnogo universytetu “KhPI” pp. 23–27 (2020). http://repository.kpi.kharkov.ua/bitstream/KhPI-Press/47822/1/vestnik_KhPI_2020_1_CCTE_Bulavin_Osoblyvosti.pdf
Samoilov, O.Y.: Kosnovam kineticheskoj teorii gidrofobnoj gidratacii v razbavlennyh vodnyh rastvorah. Zh. Fizich. Him. 52(8), 1857–1861 (1978)
Kustov, A.V., Smirnova, N.L.: Temperature and length scale dependence of tetraalkylammonium ion solvation in water, formamide, and ethylene glycol. J. Phys. Cham. B 115(49), 14551–14555 (2011). https://doi.org/10.1021/jp205331y. (PMID: 21950326)
Belashchenko, D.K., Rodnikova, M.N., Balabaev, N.K., Solonina, I.A.: Investigating hydrogen bonds in liquid ethylene glycol structure by means of molecular dynamics. Rus. J. Phys. Chem. A 88(1), 94–102 (2014). https://doi.org/10.1134/S0036024414010063
Krueger, P., Mettee, H.: Spectroscopic studies of alcohols: Part VII. intramolecular hydrogen bonds in ethylene glycol and 2-methoxyethanol. J. Mol. Spectr. 18(2), 131–140 (1965). https://doi.org/10.1016/0022-2852(65)90069-X
Busfield, W.K., Ennis, M.P., McEven, I.J.: An infrared study of intramolecular hydrogen bonding in \(\alpha\),\(\omega\) diols. Spectrochim. Acta Part A 296, 1259–1264 (1975)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Bulavin, V.I., V’yunnik, I.N., Kramarenko, A.V. et al. Kinetic Solvation of Singly Charged Ions in Infinitely Dilute Solutions in Ethylene Glycol: Effect of Temperature. J Solution Chem 51, 1334–1352 (2022). https://doi.org/10.1007/s10953-022-01201-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-022-01201-y