Skip to main content

Advertisement

Log in

Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years; Predicting Solubility of Drugs Approved in 2021

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

A Correction to this article was published on 21 October 2022

This article has been updated

Abstract

For the ‘small-molecule’ NMEs (new molecular entities) approved in 2021 by the US FDA, quantitative solubility values were found for 28 drugs, nearly all from published New Drug Applications (NDAs). Comparisons of physicochemical properties over the last six years indicate that the NMEs are slowly continuing to increase in size and decrease in solubility. Since 2016, the intrinsic solubility values (S0) have decreased on average by 0.50 log10 unit, the calculated octanol–water partition coefficients (clogP) have increased by 0.34 log10 unit, and the molecular weights (MW) have increased by 22 g·mol−1 (to 477, compared to 298 in older drugs). The average number of H-bond acceptors has remained constant, while the average number of H-bond donors and the Kier Φ molecular flexibility indices have decreased slightly. The reported solubility data for the 2021 small-molecule NMEs were processed using the program pDISOL-X to obtain S0 values, normalized to 25 °C. The S0 values ranged from 2 ng·mL−1 (avacopan) to 43 mg·mL−1 (viloxazine). In the new set, MW spanned from 233 g·mol−1 (dexmethylphenidate) to 1215 g·mol−1 (voclosporin). Values of clogP ranged from − 0.3 (serdexmethylphenidate, a quaternary ammonium molecule) to 8.1 (avacopan). Five different in-silico models were used to predict the aqueous intrinsic log10 solubility of the 28 novel NMEs: (i) Yalkowsky’s General Solubility Equation (GSE(classic)), (ii) Abraham’s Linear Solvation Equation (ABSOLV), (iii) Avdeef–Kansy ‘Flexible-Acceptor’ General Solubility Equation ((GSE(Φ,B)), (iv) Breiman’s Random Forest Regression (RFR), and (v) consensus model based on (ii) and (iii) above. The various models were retrained with an enlarged version of the Wiki-pS0 database (currently at 7655 log10 S0 entries of drug-relevant molecules). The consensus model (r2 = 0.67, RMSE = 1.08) just slightly outperformed the other four models. The relatively simple consensus prediction equation can be easily incorporated into spreadsheet calculations. As new drugs are approved, it will be important to continue monitoring the quality of measured solubility. Matching prediction to measurement is valuable when prediction methods are applied to virtual libraries, in order to seek opportunities to minimize pharmacokinetic risks of large, but otherwise promising, candidate molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Change history

Abbreviations

S 0 :

Aqueous intrinsic solubility (i.e., the solubility of the uncharged form of the API)

S w :

Solubility of the pure API (active pharmaceutical ingredient) in pure water

n :

Number of measurements of log10 S0 in the training/test set

MPP:

The measure of prediction performance [77] refers to the percent of ‘correct’ predictions, as defined by the count of absolute residuals |log10 S obs0 – log10 S calc0 |≤ 0.5 divided by n. MPP is represented as a pie chart in the correlation plots (Fig. 5)

RMSE:

Root-mean-square error, accounting for bias in the prediction of external test set solubility values: RMSE = [1/(n − 1) Σi (y obsi  – y calci )2]1/2, where y = log10 S0

r 2 :

Coefficient of determination, accounting for bias in prediction of external test set solubility values [79]: r2 = 1 − Σi (y obs i y calci )2i (y obsi —< y >)2, where y = log10 S0, and < y > is the mean value of observed log10 S0

bias:

Intercept in the regression fit: yobs = a + b ycalc, where the slope factor is fixed at unity

SD:

Standard deviation: SD = [1/n Σi (y obsi  − <y>)2 ]1/2, where <y> = mean value of log10 S0

References

  1. Mullard, A.: FDA drug approvals. The FDA approved 50 novel drugs in 2021, including the first KRAS inhibitor for cancer and the first anti-amyloid antibody for Alzheimer’s disease. Nat Rev Drug Discov 21, 83–88 (2022). https://doi.org/10.1038/d41573-022-00001-9

    Article  CAS  PubMed  Google Scholar 

  2. Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23, 3–25 (1997)

    Article  CAS  Google Scholar 

  3. Leeson, P.D.: Molecular inflation, attrition & the rule of five. Adv. Drug Deliv. Rev. 101, 22–33 (2016)

    Article  CAS  PubMed  Google Scholar 

  4. Bergström, C.A.S., Charman, W.N., Porter, C.J.H.: Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 101, 6–21 (2016)

    Article  PubMed  Google Scholar 

  5. Krämer, S.D., Aschmann, H.E., Hatibovic, M., Hermann, K.F., Neuhaus, C.S., Brunner, C., Belli, S.: When barriers ignore the rule-of-five. Adv. Drug Del. Rev. 101, 62–74 (2016)

    Article  Google Scholar 

  6. Ermondi, G., Vallaro, M., Goetz, G., Shalaeva, M., Caron, G.: Updating the portfolio of physicochemical descriptors related to permeability in the beyond the rule of 5 chemical space. Eur. J. Pharm. Sci. 146, 105274 (2020). https://doi.org/10.1016/j.ejps.2020.105274

    Article  CAS  PubMed  Google Scholar 

  7. Caron, G., Kihlberg, J., Ermondi, G.: Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Med. Res. Rev. 39, 1707–1729 (2019). https://doi.org/10.1002/med.21562

    Article  CAS  PubMed  Google Scholar 

  8. Caron, G., Digiesi, V., Solaro, S., Ermondi, G.: Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discov. Today 25, 621–627 (2020). https://doi.org/10.1016/j.drudis.2020.01.012

    Article  CAS  PubMed  Google Scholar 

  9. Carrupt, P.A., Testa, B., Bechalany, A., el Tayar, N., Descas, P., Perrissoud, D.: Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J. Med. Chem. 34, 1272–1275 (1991)

    Article  CAS  PubMed  Google Scholar 

  10. Avdeef, A.: Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET & DMPK 8, 29–77 (2020). https://doi.org/10.5599/admet.766

    Article  Google Scholar 

  11. Avdeef, A., Kansy, M.: Can small drugs predict the intrinsic aqueous solubility of ‘beyond Rule of 5’ big drugs? ADMET & DMPK (2020). https://doi.org/10.5599/admet.794

    Article  Google Scholar 

  12. Avdeef, A., Kansy, M.: Flexible-acceptor general solubility equation for beyond rule of 5. Drugs. Mol. Pharm. 17, 3930–3940 (2020). https://doi.org/10.1021/acs.molpharmaceut.0c00689

    Article  CAS  PubMed  Google Scholar 

  13. Avdeef, A., Kansy, M.: Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE(Flexible-Acceptor) consensus model outperforming random forest regression. J. Solution Chem. (2022). https://doi.org/10.1007/s10953-022-01141-7

    Article  PubMed  PubMed Central  Google Scholar 

  14. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  Google Scholar 

  15. Yalkowsky, S.H., Valvani, S.C.: Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69, 912–922 (1980)

    Article  CAS  PubMed  Google Scholar 

  16. Abraham, M.H., Le, J.: The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci. 88, 868–880 (1999)

    Article  CAS  PubMed  Google Scholar 

  17. Mullard, A.: FDA drug approvals. FDA approval count fell last year, despite a steady regulatory filing rate. Nat. Rev. Drug Discov. 16, 73–76 (2017)

    Article  CAS  PubMed  Google Scholar 

  18. Mullard, A.: 2017 FDA drug approvals. The FDA approved 46 new drugs last year, the highest total in more than two decades. Nat. Rev. Drug Discov. 17, 81–85 (2018)

    Article  CAS  PubMed  Google Scholar 

  19. Mullard, A.: 2018 FDA drug approvals. The FDA approved a record 59 drugs last year, but the commercial potential of these drugs is lackluster. Nat. Rev. Drug Discov. 18, 85–89 (2019)

    Article  PubMed  Google Scholar 

  20. Mullard, A.: 2019 FDA drug approvals. The FDA approved 48 new drugs last year, keeping up the momentum of recent years. Nat. Rev. Drug Discov. 19, 79–84 (2020)

    Article  CAS  PubMed  Google Scholar 

  21. Mullard, A.: 2020 FDA drug approvals. The FDA approved 53 novel drugs in 2020, the second highest count in over 20 years. Nat. Rev. Drug Discov. 20, 85–90 (2021)

    Article  CAS  PubMed  Google Scholar 

  22. Jain, N., Yalkowsky, S.H.: Estimation of the aqueous solubility I: Application to organic nonelectrolytes. J. Pharm. Sci. 90, 234–252 (2001)

    Article  CAS  PubMed  Google Scholar 

  23. Ran, Y., Jain, N., Yalkowsky, S.H.: Prediction of aqueous solubility of organic compounds by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 41, 1208–1217 (2001)

    Article  CAS  PubMed  Google Scholar 

  24. Hansch, C., Quinlan, J.E., Lawrence, G.L.: Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33, 347–350 (1968)

    Article  CAS  Google Scholar 

  25. Kier, L.B.: An index of molecular flexibility from kappa shape attributes. Quant. Struct.-Act. Relat. 8, 221–224 (1989)

    Article  CAS  Google Scholar 

  26. Platts, J.A., Butina, D., Abraham, M.H., Hersey, A.: Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 39, 835–845 (1999)

    Article  CAS  Google Scholar 

  27. Landrum, G.; Lewis, R.; Palmer, A.; Stiefl, N.; Vulpetti, A.: Making sure there's a give associated with the take: Producing and using open-source software in big pharma. J. Cheminformatics 3, 1–1 (2011); http://www.rdkit.org/.

  28. Schoepfer, J., Jahnke, W., Berellini, G., Buonamici, S., Cotesta, S., Cowan-Jacob, S.W., Dodd, S., Drueckes, P., Fabbro, D., Gabriel, T., Groell, J.-M., Grotzfeld, R.M., Hassan, A.Q., Henry, C., Iyer, V., Jones, D., Lombardo, F., Loo, A., Manley, P.W., Pellé, X., Rummel, G., Salem, B., Warmuth, M., Wylie, A.A., Zoller, T., Marzinzik, A.L., Furet, P.: Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem. 61, 8120–8135 (2018). https://doi.org/10.1021/acs.jmedchem.8b01040

    Article  CAS  PubMed  Google Scholar 

  29. Food and Drug Administration (USA): Asciminib (Scemblix). Novartis. NDA 215358. Multi-Discipline Review. 24 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215358Orig1s000,Orig2s000MultidisciplineR.pdf. Accessed 28 Jan 2022.

  30. Food and Drug Administration (USA): Asciminib (Scemblix). Novartis. NDA 215358. Product Quality Review(s). 24 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215358Orig1s000,Orig2s000ChemR.pdf. Accessed 28 Jan 2022

  31. Food and Drug Administration (USA): Avacopan (Tavneos). ChemoCentrix. NDA 214487.Multi-Discipline Review. 7 Jul 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214487Orig1s000MultidisciplineR.pdf. Accessed 30 Jan 2022

  32. Food and Drug Administration (USA): Avacopan (Tavneos). ChemoCentrix. NDA 214487. Product Quality Review(s). 19Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214487Orig1s000ChemR.pdf. Accessed 28 Jan 2022

  33. Food and Drug Administration (USA): Belumosudil.Mesylate (Resurock). Kadmon. NDA 214783. Product Quality Review(s). 2 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214783Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  34. Food and Drug Administration (USA): Belzutifan (WELIREG). Merck. NDA 215383. Product Quality Review(s). 15 Jan 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215383Orig1s000ChemR.pdf. Accessed 28 Jan 2022

  35. Food and Drug Administration (USA): Cabotegravir(Cabenuva Kit), ViiV. NDA 212887Orig1s000, 212888Orig2s000. Product Quality Review(s). 30 Nov 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212887Orig1s000,212888Orig1s000ChemR.pdf. Accessed 26 Jan 2022

  36. Food and Drug Administration (USA): Daridorexant (Quviviq). Idorsia Pharmaceuticals Ltd. NDA 214985. Product Quality Review(s).13 Aug 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/214985Orig1s000ChemR.pdf. Accessed 19 Feb 2022

  37. Food and Drug Administration (USA): Serdexmethylphenidate chloride & Dexmethylphenidate hydrochloride (Azstarys). Commave Therapeutics. NDA 212994. Multi-Discipline Review. 2 Mar 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212994Orig1s000MultidisciplineR.pdf. Accessed 6 Feb 2022

  38. Food and Drug Administration (USA): Drospirenone+Estetrol (Nextstellis). Mayne Pharma. NDA 214154. Product Quality Review(s). 9 April 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214154Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  39. European Medicines Agency: Fexinidazole (Fexinidazole Winthrop), CHMP assessment report, Procedure No. EMEA/H/W/002320/0000. 15 Nov 2018; https://www.ema.europa.eu/en/documents/outside-eu-assessment-report/fexinidazole-winthrop-assessment-report_en.pdf. Accessed 1 Feb 2022

  40. Food and Drug Administration (USA): Finerenone (Kerendia). Bayer. NDA 215341. Product Quality Review(s). 31 Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215341Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  41. Food and Drug Administration (USA): Infigratinib (Truseltiq). QED Therapeutics. NDA 214622. Product Quality Review(s). 20 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214622Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  42. Food and Drug Administration (USA): Infigratinib (Truseltiq). QED Therapeutics. NDA 214622. Multi-Discipline Review. 29 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214622Orig1s000MultidisciplineR.pdf. Accessed 27 Jan 2022

  43. Food and Drug Administration (USA): Maralixibat Chloride (Livmarli). Mirum. NDA 214662. Product Quality Review(s). 22Sep 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214662Orig1s000ChemR.pdf. Accessed 1 Feb 2022

  44. Food and Drug Administration (USA): Maribavir (Livtencity). Takeda. NDA 215596. Product Quality Review(s). 22 Sep 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215596Orig1s000ChemR.pdf. Accessed 28 Jan 2022

  45. Sun, K., Welty, D.: Elucidation of metabolic and disposition pathways for maribavir in nonhuman primates through mass balance and semi–physiologically based modeling approaches. Drug Metab. Dispos. 49, 1025–1037 (2021). https://doi.org/10.1124/dmd.121.000493

    Article  CAS  PubMed  Google Scholar 

  46. Spira, J.; Lehmann, F.: Lyophilized preparations of cytotoxic dipeptides. Patent: US 2014.0128462A1. 2014; https://patentimages.storage.googleapis.com/a7/4e/ad/af3e43497ed19c/US20140128462A1.pdf

  47. Food and Drug Administration (USA): Mobocertinib (Exkivity). Takeda. NDA 215310. Highlights of Prescribing Information. 2021; https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215310s000lbl.pdf. Accessed 2 Feb 2022

  48. Food and Drug Administration (USA): Mobocertinib (Exkivity). Takeda. NDA 215310. Product Quality Review(s). 9 Aug 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215310Orig1s000ChemR.pdf. Accessed 28 Jan 2022

  49. Food and Drug Administration (USA): Odevixibat (Bylvay). Albireo. NDA 215498. Product Quality Review(s). 5 Jul 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215498Orig1s000ChemR.pdf. Accessed 28 Jan 2022

  50. Benet, L.Z., Broccatelli, F., Oprea, T.I.: BDDCS applied to over 900 drugs. AAPS J. 13, 519–547 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Fornells, E., Fuguet, E., Mañéa, M., Ruiz, R., Box, K., Bosch, E., Ràfols, C.: Effect of vinylpyrrolidone polymers on the solubility and supersaturation of drugs; a study using the CheqSol method. Eur. J. Pharm. Sci. 117, 227–235 (2018)

    Article  CAS  PubMed  Google Scholar 

  52. Marano, S., Barker, S.A., Raimi-Abraham, B.T., Missaghi, S., Rajabi-Siahboomi, A., Craig, D.Q.M.: Development of microfibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur. J. Pharm. Biopharm. 103, 84–94 (2016)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Food and Drug Administration (USA): Ponesimod (Ponvory). J&J. NDA 213498. Product Quality Review(s). 12 Nov 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213498Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  54. Food and Drug Administration (USA): Rilpivirine.HCl (Edurant), Tibotek. NDA 202022. Clinical Pharmacology and Biopharmaceutics Review. 25 Mar 2011; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf. Accessed 27 Jan 2022

  55. Kommavarapu, P., Maruthapillai, A., Palanisamy, K., Sunkara, M.: Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate. Beni-Suef Univ. J. Basic Appl. Sci. 4, 71–79 (2015). https://doi.org/10.1016/j.bjbas.2015.02.010

    Article  Google Scholar 

  56. Food and Drug Administration (USA): Sotorasib (Lumakras). Amgen. NDA 214665. Product Quality Review(s). 7 May 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214665Orig1s000ChemR.pdf. Accessed 27 Jan 2022

  57. Fink, C., Lecomte, M., Badolo, L., Wagner, K., Mäder, K., Peters, S.-A.: Identification of solubility-limited absorption of oral anticancer drugs using PBPK modeling based on rat PK and its relevance to human. Eur. J. Pharm. Sci. 152, 105431 (2020). https://doi.org/10.1016/j.ejps.2020.105431

    Article  CAS  PubMed  Google Scholar 

  58. Food and Drug Administration (USA): Tivozanib (Fotivda). Aveo. NDA 212904. Product Quality Review(s). 30 Sep 2020. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212904Orig1s000ChemR.pdf. Accessed 27 Jan 2022.

  59. Food and Drug Administration (USA): Umbralisib (Ukoniq). TG Therapeutics. NDA 213176. Product Quality Review(s). 11 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213176Orig1Orig2s000ChemR.pdf. Accessed 26 Jan 2022.

  60. Food and Drug Administration (USA): Vericiguat (Verquvo). Merck, Sharp & Dohme. NDA 214377. Product Quality Review(s). 1 Feb 2019; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214377Orig1s000ChemR.pdf. Accessed 26 Jan 2022.

  61. Food and Drug Administration (USA): Viloxazine (Qelbree). Supernus Pharmaceutics. NDA 211964. Product Quality Review(s). 5 Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/211964Orig1s000ChemR.pdf. Accessed 27 Jan 2022.

  62. Food and Drug Administration (USA): Voclosporin (Lupkynis). Aurinia Pharmaceutics. NDA 213716. Product Quality Review(s). 8 Oct 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213716Orig1s000ChemR.pdf. Accessed 26 Jan 2022.

  63. Avdeef, A.: Solubility temperature dependence predicted from 2D structure. ADMET & DMPK 3, 298–344 (2015)

    Article  Google Scholar 

  64. Völgyi, G., Marosi, A., Takács-Novák, K., Avdeef, A.: Salt solubility products of diprenorphine hydrochloride, codeine and lidocaine hydrochlorides and phosphates – Novel method of data analysis not dependent on explicit solubility equations. ADMET & DMPK 1, 48–62 (2013)

    Article  Google Scholar 

  65. Avdeef, A.: Anomalous solubility behavior of several acidic drugs. ADMET & DMPK 2, 33–42 (2014)

    Article  Google Scholar 

  66. Avdeef, A.: Phosphate precipitates and water-soluble aggregates in re-examined solubility-pH data of twenty-five basic drugs. ADMET & DMPK 2, 43–55 (2014)

    Article  Google Scholar 

  67. Verbić, T.Z., Avdeef, A.: Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: enhanced solubility due to drug-buffer aggregates. Eur. J. Pharm. Sci. 133, 264–274 (2019)

    Article  PubMed  Google Scholar 

  68. Marković, O.S., Patel, N.G., Serajuddin, A.T.M., Avdeef, A., Verbić, T.Ž: Nortriptyline hydrochloride solubility-pH profiles in a saline phosphate buffer: Drug-phosphate complexes and multiple pHmax domains with a Gibbs phase rule “soft” constraints. Mol. Pharm. 19, 710–719 (2022). https://doi.org/10.1021/acs.molpharmaceut.1c00919

    Article  CAS  PubMed  Google Scholar 

  69. Avdeef, A., Fuguet, E., Llinàs, A., Ràfols, C., Bosch, E., Völgyi, G., Verbić, T., Boldyreva, E., Takács-Novák, K.: Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality. ADMET & DMPK 4, 117–178 (2016)

    Article  Google Scholar 

  70. Bergström, C.A.S., Avdeef, A.: Perspectives in solubility measurement and interpretation. ADMET & DMPK 7, 88–105 (2019)

    Article  Google Scholar 

  71. Avdeef, A.: Absorption and Drug Development, 2nd edn. Wiley-Interscience, Hoboken NJ (2012)

    Book  Google Scholar 

  72. Avdeef, A.: Multi-lab intrinsic solubility measurement reproducibility in CheqSol and shake-flask methods. ADMET & DMPK 7, 210–219 (2019). https://doi.org/10.5599/admet.698

    Article  Google Scholar 

  73. Llinàs, A., Avdeef, A.: Solubility challenge revisited after ten years, with multi-lab shake-flask data, using tight (SD ∼ 0.17 log) and loose (SD ∼ 0.62 log) test sets. J. Chem. Inf. Model. 59, 3036–3040 (2019). https://doi.org/10.1021/acs.jcim.9b00345

    Article  CAS  PubMed  Google Scholar 

  74. Llinàs, A., Oprisiu, I., Avdeef, A.: Findings of the second challenge to predict aqueous solubility. J. Chem. Inf. Model. 60, 4791–4803 (2020). https://doi.org/10.1021/acs.jcim.0c00701

    Article  CAS  PubMed  Google Scholar 

  75. Lang, A.S.I.D.; Bradley, J.-C.: ONS melting point model 010. QsarDB content. Property mpC. http://qsardb.org/repository/predictor/10967/104?model=rf.

  76. Hughes, L.D., Palmer, D.S., Nigsch, F., Mitchell, J.B.O.: Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J. Chem. Inf. Model. 48, 220–232 (2008)

    Article  CAS  PubMed  Google Scholar 

  77. Hopfinger, A.J., Esposito, E.X., Llinàs, A., Glen, R.C., Goodman, J.M.: Findings of the challenge to predict aqueous solubility. J. Chem. Inf. Model. 49, 1–5 (2009)

    Article  CAS  PubMed  Google Scholar 

  78. Lipinski, C.A.: Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Tox. Meth. 44, 235–249 (2000)

    Article  CAS  Google Scholar 

  79. Avdeef, A.: Do you know your r2? ADMET& DMPK (2021). https://doi.org/10.5599/admet.888

    Article  Google Scholar 

  80. Avdeef, A., Sugano, K.: Salt solubility and disproportionation - uses and limitations of equations for pHmax and the in-silico prediction of pHmax. J. Pharm. Sci. 111, 225–246 (2022). https://doi.org/10.1016/j.xphs.2021.11.017

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study is dedicated to the memory of Professor Michael Abraham, whose pioneering work in the critical role of hydrogen bonding in solvation has influenced the authors deeply. The complete Wiki-pS0 database is planned to be released in book form: A. Avdeef. Intrinsic Aqueous Solubility—Critically Curated Data for Pharmaceutical Research (under discussion with publisher).

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

AA and MK both were involved in writing the manuscript.

Corresponding author

Correspondence to Alex Avdeef.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: Figure 1 has been corrected.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeef, A., Kansy, M. Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years; Predicting Solubility of Drugs Approved in 2021. J Solution Chem 51, 1455–1481 (2022). https://doi.org/10.1007/s10953-022-01199-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01199-3

Keywords

Navigation