Abstract
For the ‘small-molecule’ NMEs (new molecular entities) approved in 2021 by the US FDA, quantitative solubility values were found for 28 drugs, nearly all from published New Drug Applications (NDAs). Comparisons of physicochemical properties over the last six years indicate that the NMEs are slowly continuing to increase in size and decrease in solubility. Since 2016, the intrinsic solubility values (S0) have decreased on average by 0.50 log10 unit, the calculated octanol–water partition coefficients (clogP) have increased by 0.34 log10 unit, and the molecular weights (MW) have increased by 22 g·mol−1 (to 477, compared to 298 in older drugs). The average number of H-bond acceptors has remained constant, while the average number of H-bond donors and the Kier Φ molecular flexibility indices have decreased slightly. The reported solubility data for the 2021 small-molecule NMEs were processed using the program pDISOL-X to obtain S0 values, normalized to 25 °C. The S0 values ranged from 2 ng·mL−1 (avacopan) to 43 mg·mL−1 (viloxazine). In the new set, MW spanned from 233 g·mol−1 (dexmethylphenidate) to 1215 g·mol−1 (voclosporin). Values of clogP ranged from − 0.3 (serdexmethylphenidate, a quaternary ammonium molecule) to 8.1 (avacopan). Five different in-silico models were used to predict the aqueous intrinsic log10 solubility of the 28 novel NMEs: (i) Yalkowsky’s General Solubility Equation (GSE(classic)), (ii) Abraham’s Linear Solvation Equation (ABSOLV), (iii) Avdeef–Kansy ‘Flexible-Acceptor’ General Solubility Equation ((GSE(Φ,B)), (iv) Breiman’s Random Forest Regression (RFR), and (v) consensus model based on (ii) and (iii) above. The various models were retrained with an enlarged version of the Wiki-pS0 database (currently at 7655 log10 S0 entries of drug-relevant molecules). The consensus model (r2 = 0.67, RMSE = 1.08) just slightly outperformed the other four models. The relatively simple consensus prediction equation can be easily incorporated into spreadsheet calculations. As new drugs are approved, it will be important to continue monitoring the quality of measured solubility. Matching prediction to measurement is valuable when prediction methods are applied to virtual libraries, in order to seek opportunities to minimize pharmacokinetic risks of large, but otherwise promising, candidate molecules.
Similar content being viewed by others
Change history
21 October 2022
A Correction to this paper has been published: https://doi.org/10.1007/s10953-022-01217-4
Abbreviations
- S 0 :
-
Aqueous intrinsic solubility (i.e., the solubility of the uncharged form of the API)
- S w :
-
Solubility of the pure API (active pharmaceutical ingredient) in pure water
- n :
-
Number of measurements of log10 S0 in the training/test set
- MPP:
-
The measure of prediction performance [77] refers to the percent of ‘correct’ predictions, as defined by the count of absolute residuals |log10 S obs0 – log10 S calc0 |≤ 0.5 divided by n. MPP is represented as a pie chart in the correlation plots (Fig. 5)
- RMSE:
-
Root-mean-square error, accounting for bias in the prediction of external test set solubility values: RMSE = [1/(n − 1) Σi (y obsi – y calci )2]1/2, where y = log10 S0
- r 2 :
-
Coefficient of determination, accounting for bias in prediction of external test set solubility values [79]: r2 = 1 − Σi (y obs i – y calci )2 /Σi (y obsi —< y >)2, where y = log10 S0, and < y > is the mean value of observed log10 S0
- bias:
-
Intercept in the regression fit: yobs = a + b ycalc, where the slope factor is fixed at unity
- SD:
-
Standard deviation: SD = [1/n Σi (y obsi − <y>)2 ]1/2, where <y> = mean value of log10 S0
References
Mullard, A.: FDA drug approvals. The FDA approved 50 novel drugs in 2021, including the first KRAS inhibitor for cancer and the first anti-amyloid antibody for Alzheimer’s disease. Nat Rev Drug Discov 21, 83–88 (2022). https://doi.org/10.1038/d41573-022-00001-9
Lipinski, C.A., Lombardo, F., Dominy, B.W., Feeney, P.J.: Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Delivery Rev. 23, 3–25 (1997)
Leeson, P.D.: Molecular inflation, attrition & the rule of five. Adv. Drug Deliv. Rev. 101, 22–33 (2016)
Bergström, C.A.S., Charman, W.N., Porter, C.J.H.: Computational prediction of formulation strategies for beyond-rule-of-5 compounds. Adv. Drug Deliv. Rev. 101, 6–21 (2016)
Krämer, S.D., Aschmann, H.E., Hatibovic, M., Hermann, K.F., Neuhaus, C.S., Brunner, C., Belli, S.: When barriers ignore the rule-of-five. Adv. Drug Del. Rev. 101, 62–74 (2016)
Ermondi, G., Vallaro, M., Goetz, G., Shalaeva, M., Caron, G.: Updating the portfolio of physicochemical descriptors related to permeability in the beyond the rule of 5 chemical space. Eur. J. Pharm. Sci. 146, 105274 (2020). https://doi.org/10.1016/j.ejps.2020.105274
Caron, G., Kihlberg, J., Ermondi, G.: Intramolecular hydrogen bonding: An opportunity for improved design in medicinal chemistry. Med. Res. Rev. 39, 1707–1729 (2019). https://doi.org/10.1002/med.21562
Caron, G., Digiesi, V., Solaro, S., Ermondi, G.: Flexibility in early drug discovery: focus on the beyond-Rule-of-5 chemical space. Drug Discov. Today 25, 621–627 (2020). https://doi.org/10.1016/j.drudis.2020.01.012
Carrupt, P.A., Testa, B., Bechalany, A., el Tayar, N., Descas, P., Perrissoud, D.: Morphine 6-glucuronide and morphine 3-glucuronide as molecular chameleons with unexpected lipophilicity. J. Med. Chem. 34, 1272–1275 (1991)
Avdeef, A.: Prediction of aqueous intrinsic solubility of druglike molecules using Random Forest regression trained with Wiki-pS0 database. ADMET & DMPK 8, 29–77 (2020). https://doi.org/10.5599/admet.766
Avdeef, A., Kansy, M.: Can small drugs predict the intrinsic aqueous solubility of ‘beyond Rule of 5’ big drugs? ADMET & DMPK (2020). https://doi.org/10.5599/admet.794
Avdeef, A., Kansy, M.: Flexible-acceptor general solubility equation for beyond rule of 5. Drugs. Mol. Pharm. 17, 3930–3940 (2020). https://doi.org/10.1021/acs.molpharmaceut.0c00689
Avdeef, A., Kansy, M.: Predicting solubility of newly-approved drugs (2016–2020) with a simple ABSOLV and GSE(Flexible-Acceptor) consensus model outperforming random forest regression. J. Solution Chem. (2022). https://doi.org/10.1007/s10953-022-01141-7
Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)
Yalkowsky, S.H., Valvani, S.C.: Solubility and partitioning I: Solubility of nonelectrolytes in water. J. Pharm. Sci. 69, 912–922 (1980)
Abraham, M.H., Le, J.: The correlation and prediction of the solubility of compounds in water using an amended solvation energy relationship. J. Pharm. Sci. 88, 868–880 (1999)
Mullard, A.: FDA drug approvals. FDA approval count fell last year, despite a steady regulatory filing rate. Nat. Rev. Drug Discov. 16, 73–76 (2017)
Mullard, A.: 2017 FDA drug approvals. The FDA approved 46 new drugs last year, the highest total in more than two decades. Nat. Rev. Drug Discov. 17, 81–85 (2018)
Mullard, A.: 2018 FDA drug approvals. The FDA approved a record 59 drugs last year, but the commercial potential of these drugs is lackluster. Nat. Rev. Drug Discov. 18, 85–89 (2019)
Mullard, A.: 2019 FDA drug approvals. The FDA approved 48 new drugs last year, keeping up the momentum of recent years. Nat. Rev. Drug Discov. 19, 79–84 (2020)
Mullard, A.: 2020 FDA drug approvals. The FDA approved 53 novel drugs in 2020, the second highest count in over 20 years. Nat. Rev. Drug Discov. 20, 85–90 (2021)
Jain, N., Yalkowsky, S.H.: Estimation of the aqueous solubility I: Application to organic nonelectrolytes. J. Pharm. Sci. 90, 234–252 (2001)
Ran, Y., Jain, N., Yalkowsky, S.H.: Prediction of aqueous solubility of organic compounds by the General Solubility Equation (GSE). J. Chem. Inf. Comput. Sci. 41, 1208–1217 (2001)
Hansch, C., Quinlan, J.E., Lawrence, G.L.: Linear free-energy relationship between partition coefficients and the aqueous solubility of organic liquids. J. Org. Chem. 33, 347–350 (1968)
Kier, L.B.: An index of molecular flexibility from kappa shape attributes. Quant. Struct.-Act. Relat. 8, 221–224 (1989)
Platts, J.A., Butina, D., Abraham, M.H., Hersey, A.: Estimation of molecular linear free energy relation descriptors using a group contribution approach. J. Chem. Inf. Comput. Sci. 39, 835–845 (1999)
Landrum, G.; Lewis, R.; Palmer, A.; Stiefl, N.; Vulpetti, A.: Making sure there's a give associated with the take: Producing and using open-source software in big pharma. J. Cheminformatics 3, 1–1 (2011); http://www.rdkit.org/.
Schoepfer, J., Jahnke, W., Berellini, G., Buonamici, S., Cotesta, S., Cowan-Jacob, S.W., Dodd, S., Drueckes, P., Fabbro, D., Gabriel, T., Groell, J.-M., Grotzfeld, R.M., Hassan, A.Q., Henry, C., Iyer, V., Jones, D., Lombardo, F., Loo, A., Manley, P.W., Pellé, X., Rummel, G., Salem, B., Warmuth, M., Wylie, A.A., Zoller, T., Marzinzik, A.L., Furet, P.: Discovery of asciminib (ABL001), an allosteric inhibitor of the tyrosine kinase activity of BCR-ABL1. J. Med. Chem. 61, 8120–8135 (2018). https://doi.org/10.1021/acs.jmedchem.8b01040
Food and Drug Administration (USA): Asciminib (Scemblix). Novartis. NDA 215358. Multi-Discipline Review. 24 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215358Orig1s000,Orig2s000MultidisciplineR.pdf. Accessed 28 Jan 2022.
Food and Drug Administration (USA): Asciminib (Scemblix). Novartis. NDA 215358. Product Quality Review(s). 24 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215358Orig1s000,Orig2s000ChemR.pdf. Accessed 28 Jan 2022
Food and Drug Administration (USA): Avacopan (Tavneos). ChemoCentrix. NDA 214487.Multi-Discipline Review. 7 Jul 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214487Orig1s000MultidisciplineR.pdf. Accessed 30 Jan 2022
Food and Drug Administration (USA): Avacopan (Tavneos). ChemoCentrix. NDA 214487. Product Quality Review(s). 19Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214487Orig1s000ChemR.pdf. Accessed 28 Jan 2022
Food and Drug Administration (USA): Belumosudil.Mesylate (Resurock). Kadmon. NDA 214783. Product Quality Review(s). 2 June 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214783Orig1s000ChemR.pdf. Accessed 27 Jan 2022
Food and Drug Administration (USA): Belzutifan (WELIREG). Merck. NDA 215383. Product Quality Review(s). 15 Jan 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215383Orig1s000ChemR.pdf. Accessed 28 Jan 2022
Food and Drug Administration (USA): Cabotegravir(Cabenuva Kit), ViiV. NDA 212887Orig1s000, 212888Orig2s000. Product Quality Review(s). 30 Nov 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212887Orig1s000,212888Orig1s000ChemR.pdf. Accessed 26 Jan 2022
Food and Drug Administration (USA): Daridorexant (Quviviq). Idorsia Pharmaceuticals Ltd. NDA 214985. Product Quality Review(s).13 Aug 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2022/214985Orig1s000ChemR.pdf. Accessed 19 Feb 2022
Food and Drug Administration (USA): Serdexmethylphenidate chloride & Dexmethylphenidate hydrochloride (Azstarys). Commave Therapeutics. NDA 212994. Multi-Discipline Review. 2 Mar 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212994Orig1s000MultidisciplineR.pdf. Accessed 6 Feb 2022
Food and Drug Administration (USA): Drospirenone+Estetrol (Nextstellis). Mayne Pharma. NDA 214154. Product Quality Review(s). 9 April 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214154Orig1s000ChemR.pdf. Accessed 27 Jan 2022
European Medicines Agency: Fexinidazole (Fexinidazole Winthrop), CHMP assessment report, Procedure No. EMEA/H/W/002320/0000. 15 Nov 2018; https://www.ema.europa.eu/en/documents/outside-eu-assessment-report/fexinidazole-winthrop-assessment-report_en.pdf. Accessed 1 Feb 2022
Food and Drug Administration (USA): Finerenone (Kerendia). Bayer. NDA 215341. Product Quality Review(s). 31 Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215341Orig1s000ChemR.pdf. Accessed 27 Jan 2022
Food and Drug Administration (USA): Infigratinib (Truseltiq). QED Therapeutics. NDA 214622. Product Quality Review(s). 20 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214622Orig1s000ChemR.pdf. Accessed 27 Jan 2022
Food and Drug Administration (USA): Infigratinib (Truseltiq). QED Therapeutics. NDA 214622. Multi-Discipline Review. 29 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214622Orig1s000MultidisciplineR.pdf. Accessed 27 Jan 2022
Food and Drug Administration (USA): Maralixibat Chloride (Livmarli). Mirum. NDA 214662. Product Quality Review(s). 22Sep 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214662Orig1s000ChemR.pdf. Accessed 1 Feb 2022
Food and Drug Administration (USA): Maribavir (Livtencity). Takeda. NDA 215596. Product Quality Review(s). 22 Sep 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215596Orig1s000ChemR.pdf. Accessed 28 Jan 2022
Sun, K., Welty, D.: Elucidation of metabolic and disposition pathways for maribavir in nonhuman primates through mass balance and semi–physiologically based modeling approaches. Drug Metab. Dispos. 49, 1025–1037 (2021). https://doi.org/10.1124/dmd.121.000493
Spira, J.; Lehmann, F.: Lyophilized preparations of cytotoxic dipeptides. Patent: US 2014.0128462A1. 2014; https://patentimages.storage.googleapis.com/a7/4e/ad/af3e43497ed19c/US20140128462A1.pdf
Food and Drug Administration (USA): Mobocertinib (Exkivity). Takeda. NDA 215310. Highlights of Prescribing Information. 2021; https://www.accessdata.fda.gov/drugsatfda_docs/label/2021/215310s000lbl.pdf. Accessed 2 Feb 2022
Food and Drug Administration (USA): Mobocertinib (Exkivity). Takeda. NDA 215310. Product Quality Review(s). 9 Aug 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215310Orig1s000ChemR.pdf. Accessed 28 Jan 2022
Food and Drug Administration (USA): Odevixibat (Bylvay). Albireo. NDA 215498. Product Quality Review(s). 5 Jul 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/215498Orig1s000ChemR.pdf. Accessed 28 Jan 2022
Benet, L.Z., Broccatelli, F., Oprea, T.I.: BDDCS applied to over 900 drugs. AAPS J. 13, 519–547 (2011)
Fornells, E., Fuguet, E., Mañéa, M., Ruiz, R., Box, K., Bosch, E., Ràfols, C.: Effect of vinylpyrrolidone polymers on the solubility and supersaturation of drugs; a study using the CheqSol method. Eur. J. Pharm. Sci. 117, 227–235 (2018)
Marano, S., Barker, S.A., Raimi-Abraham, B.T., Missaghi, S., Rajabi-Siahboomi, A., Craig, D.Q.M.: Development of microfibrous solid dispersions of poorly water-soluble drugs in sucrose using temperature-controlled centrifugal spinning. Eur. J. Pharm. Biopharm. 103, 84–94 (2016)
Food and Drug Administration (USA): Ponesimod (Ponvory). J&J. NDA 213498. Product Quality Review(s). 12 Nov 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213498Orig1s000ChemR.pdf. Accessed 27 Jan 2022
Food and Drug Administration (USA): Rilpivirine.HCl (Edurant), Tibotek. NDA 202022. Clinical Pharmacology and Biopharmaceutics Review. 25 Mar 2011; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2011/202022Orig1s000ClinPharmR.pdf. Accessed 27 Jan 2022
Kommavarapu, P., Maruthapillai, A., Palanisamy, K., Sunkara, M.: Preparation and characterization of rilpivirine solid dispersions with the application of enhanced solubility and dissolution rate. Beni-Suef Univ. J. Basic Appl. Sci. 4, 71–79 (2015). https://doi.org/10.1016/j.bjbas.2015.02.010
Food and Drug Administration (USA): Sotorasib (Lumakras). Amgen. NDA 214665. Product Quality Review(s). 7 May 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214665Orig1s000ChemR.pdf. Accessed 27 Jan 2022
Fink, C., Lecomte, M., Badolo, L., Wagner, K., Mäder, K., Peters, S.-A.: Identification of solubility-limited absorption of oral anticancer drugs using PBPK modeling based on rat PK and its relevance to human. Eur. J. Pharm. Sci. 152, 105431 (2020). https://doi.org/10.1016/j.ejps.2020.105431
Food and Drug Administration (USA): Tivozanib (Fotivda). Aveo. NDA 212904. Product Quality Review(s). 30 Sep 2020. https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/212904Orig1s000ChemR.pdf. Accessed 27 Jan 2022.
Food and Drug Administration (USA): Umbralisib (Ukoniq). TG Therapeutics. NDA 213176. Product Quality Review(s). 11 Sep 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213176Orig1Orig2s000ChemR.pdf. Accessed 26 Jan 2022.
Food and Drug Administration (USA): Vericiguat (Verquvo). Merck, Sharp & Dohme. NDA 214377. Product Quality Review(s). 1 Feb 2019; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214377Orig1s000ChemR.pdf. Accessed 26 Jan 2022.
Food and Drug Administration (USA): Viloxazine (Qelbree). Supernus Pharmaceutics. NDA 211964. Product Quality Review(s). 5 Mar 2021; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/211964Orig1s000ChemR.pdf. Accessed 27 Jan 2022.
Food and Drug Administration (USA): Voclosporin (Lupkynis). Aurinia Pharmaceutics. NDA 213716. Product Quality Review(s). 8 Oct 2020; https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/213716Orig1s000ChemR.pdf. Accessed 26 Jan 2022.
Avdeef, A.: Solubility temperature dependence predicted from 2D structure. ADMET & DMPK 3, 298–344 (2015)
Völgyi, G., Marosi, A., Takács-Novák, K., Avdeef, A.: Salt solubility products of diprenorphine hydrochloride, codeine and lidocaine hydrochlorides and phosphates – Novel method of data analysis not dependent on explicit solubility equations. ADMET & DMPK 1, 48–62 (2013)
Avdeef, A.: Anomalous solubility behavior of several acidic drugs. ADMET & DMPK 2, 33–42 (2014)
Avdeef, A.: Phosphate precipitates and water-soluble aggregates in re-examined solubility-pH data of twenty-five basic drugs. ADMET & DMPK 2, 43–55 (2014)
Verbić, T.Z., Avdeef, A.: Solubility-pH profile of desipramine hydrochloride in saline phosphate buffer: enhanced solubility due to drug-buffer aggregates. Eur. J. Pharm. Sci. 133, 264–274 (2019)
Marković, O.S., Patel, N.G., Serajuddin, A.T.M., Avdeef, A., Verbić, T.Ž: Nortriptyline hydrochloride solubility-pH profiles in a saline phosphate buffer: Drug-phosphate complexes and multiple pHmax domains with a Gibbs phase rule “soft” constraints. Mol. Pharm. 19, 710–719 (2022). https://doi.org/10.1021/acs.molpharmaceut.1c00919
Avdeef, A., Fuguet, E., Llinàs, A., Ràfols, C., Bosch, E., Völgyi, G., Verbić, T., Boldyreva, E., Takács-Novák, K.: Equilibrium solubility measurement of ionizable drugs – consensus recommendations for improving data quality. ADMET & DMPK 4, 117–178 (2016)
Bergström, C.A.S., Avdeef, A.: Perspectives in solubility measurement and interpretation. ADMET & DMPK 7, 88–105 (2019)
Avdeef, A.: Absorption and Drug Development, 2nd edn. Wiley-Interscience, Hoboken NJ (2012)
Avdeef, A.: Multi-lab intrinsic solubility measurement reproducibility in CheqSol and shake-flask methods. ADMET & DMPK 7, 210–219 (2019). https://doi.org/10.5599/admet.698
Llinàs, A., Avdeef, A.: Solubility challenge revisited after ten years, with multi-lab shake-flask data, using tight (SD ∼ 0.17 log) and loose (SD ∼ 0.62 log) test sets. J. Chem. Inf. Model. 59, 3036–3040 (2019). https://doi.org/10.1021/acs.jcim.9b00345
Llinàs, A., Oprisiu, I., Avdeef, A.: Findings of the second challenge to predict aqueous solubility. J. Chem. Inf. Model. 60, 4791–4803 (2020). https://doi.org/10.1021/acs.jcim.0c00701
Lang, A.S.I.D.; Bradley, J.-C.: ONS melting point model 010. QsarDB content. Property mpC. http://qsardb.org/repository/predictor/10967/104?model=rf.
Hughes, L.D., Palmer, D.S., Nigsch, F., Mitchell, J.B.O.: Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J. Chem. Inf. Model. 48, 220–232 (2008)
Hopfinger, A.J., Esposito, E.X., Llinàs, A., Glen, R.C., Goodman, J.M.: Findings of the challenge to predict aqueous solubility. J. Chem. Inf. Model. 49, 1–5 (2009)
Lipinski, C.A.: Drug-like properties and the causes of poor solubility and poor permeability. J. Pharmacol. Tox. Meth. 44, 235–249 (2000)
Avdeef, A.: Do you know your r2? ADMET& DMPK (2021). https://doi.org/10.5599/admet.888
Avdeef, A., Sugano, K.: Salt solubility and disproportionation - uses and limitations of equations for pHmax and the in-silico prediction of pHmax. J. Pharm. Sci. 111, 225–246 (2022). https://doi.org/10.1016/j.xphs.2021.11.017
Acknowledgements
This study is dedicated to the memory of Professor Michael Abraham, whose pioneering work in the critical role of hydrogen bonding in solvation has influenced the authors deeply. The complete Wiki-pS0 database is planned to be released in book form: A. Avdeef. Intrinsic Aqueous Solubility—Critically Curated Data for Pharmaceutical Research (under discussion with publisher).
Funding
The authors did not receive support from any organization for the submitted work.
Author information
Authors and Affiliations
Contributions
AA and MK both were involved in writing the manuscript.
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no known competing financial interests that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The original online version of this article was revised: Figure 1 has been corrected.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Avdeef, A., Kansy, M. Trends in PhysChem Properties of Newly Approved Drugs over the Last Six Years; Predicting Solubility of Drugs Approved in 2021. J Solution Chem 51, 1455–1481 (2022). https://doi.org/10.1007/s10953-022-01199-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-022-01199-3