Skip to main content

Advertisement

Log in

Phase Equilibria of {Carbon Dioxide + Acetone + Dimethyl Sulfoxide} Systems: Experimental Data and Thermodynamic Modeling

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Dimethyl sulfoxide (DMSO) and acetone are frequently used in supercritical antisolvent (SAS) processes, since they have very different physical properties and have complex phase behavior. This paper reports experimental phase equilibrium data for {CO2 + DMSO} and {CO2 + acetone + DMSO} systems. The static synthetic method was employed to obtain phase equilibrium behavior in pressures up to 12.1 MPa, temperature range between 313.15 and 343.15 K, the concentration of 5.5 mol·kg−1 (solute: DMSO; solvent: acetone) on a CO2-free basis, and CO2 mole fractions between 0.652 and 0.953. The experimental data measured here presented transitions of VLE (vapor–liquid equilibrium) and LLE (liquid–liquid equilibrium) phases. In this work, the effects of association between molecules are considered. Thus, the PC-SAFT EoS was used to model the experimental data and phase transitions, and the pressure deviation between experimental and calculated data for the binary and ternary system was 0.81% and 0.51%, respectively. The percentage average absolute relative deviation (%AARD) for {CO2 + DMSO}, {CO2 + acetone} and {DMSO + acetone} system was 0.57, 0.89 and 0.29, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zougagh, M., Valcárcel, M., Rı́os, A.: Supercritical fluid extraction: a critical review of its analytical usefulness. TrAC Trends Anal. Chem. 23, 399–405 (2004). https://doi.org/10.1016/S0165-9936(04)00524-2

    Article  CAS  Google Scholar 

  2. Sihvonen, M.: Advances in supercritical carbon dioxide technologies. Trends Food Sci. Technol. 10, 217–222 (1999). https://doi.org/10.1016/S0924-2244(99)00049-7

    Article  CAS  Google Scholar 

  3. Raveendran, P., Wallen, S.L.: Cooperative C−H···O hydrogen bonding in CO2−Lewis base complexes: implications for solvation in supercritical CO2. J. Am. Chem. Soc. 124, 12590–12599 (2002). https://doi.org/10.1021/ja0174635

    Article  CAS  PubMed  Google Scholar 

  4. Chiu, H.Y., Lee, M.J., Lin, H.M.: Vapor–liquid phase boundaries of binary mixtures of carbon dioxide with ethanol and acetone. J. Chem. Eng. Data 53, 2393–2402 (2008). https://doi.org/10.1021/je800371a

    Article  CAS  Google Scholar 

  5. Chiu, H.-Y., Lin, H., Lee, M.-J.: Vapor–liquid phase equilibrium of carbon dioxide with mixed solvents of DMSO + ethanol and chloroform + methanol including near critical regions. J. Supercrit. Fluids. 82, 146–150 (2013). https://doi.org/10.1016/j.supflu.2013.07.013

    Article  CAS  Google Scholar 

  6. Nikolai, P., Rabiyat, B., Aslan, A., Ilmutdin, A.: Supercritical CO2: properties and technological applications—a review. J. Therm. Sci. 28, 394–430 (2019). https://doi.org/10.1007/s11630-019-1118-4

    Article  CAS  Google Scholar 

  7. Andreatta, A.E., Florusse, L.J., Bottini, S.B., Peters, C.J.: Phase equilibria of dimethyl sulfoxide (DMSO) + carbon dioxide, and DMSO + carbon dioxide + water mixtures. J. Supercrit. Fluids. 42, 60–68 (2007). https://doi.org/10.1016/j.supflu.2006.12.015

    Article  CAS  Google Scholar 

  8. Reverchon, E.: Supercritical antisolvent precipitation of micro- and nano-particles. J. Supercrit. Fluids. 15, 1–21 (1999). https://doi.org/10.1016/S0896-8446(98)00129-6

    Article  CAS  Google Scholar 

  9. Elvassore, N., Bertucco, A., Caliceti, P.: Production of insulin-loaded poly(ethylene glycol)/poly(l-lactide) (PEG/PLA) nanoparticles by gas antisolvent techniques. J. Pharm. Sci. 90, 1628–1636 (2001). https://doi.org/10.1002/jps.1113

    Article  CAS  PubMed  Google Scholar 

  10. Lima, J.C., de Araújo, P.C.C., dos Santos Croscato, G., de Almeida, O., Cabral, V.F., Ferreira-Pinto, L., Cardozo-Filho, L.: Experimental phase equilibrium data for rotenone in supercritical carbon dioxide. J. Chem. Eng. Data (2019). https://doi.org/10.1021/acs.jced.8b01165

    Article  Google Scholar 

  11. Junior, O.V., Ferreira-Pinto, L., Cabral, V.F., Giufrida, W.M., Cardozo-Filho, L.: Experimental measurements of the CO2 (1) + acetone (2) + ivermectin (3) system at high pressure. J. Chem. Eng. Data 64, 3786–3792 (2019). https://doi.org/10.1021/acs.jced.9b00072

    Article  CAS  Google Scholar 

  12. Giufrida, W.M., Voll, F.A., Feihrmann, A.C., Kunita, M.H., Madureira, E.H., Guilherme, M.R., Vedoy, D.R.L., Cabral, V.F., Cardozo-Filho, L.: Production of microparticles of PHBV polymer impregnated with progesterone by supercritical fluid technology. Can. J. Chem. Eng. 94, 1336–1341 (2016). https://doi.org/10.1002/cjce.22511

    Article  CAS  Google Scholar 

  13. Giufrida, W.M., Rodriguez-Reartes, S.B., Alonso, C.G., Zabaloy, M.S., Cabral, V.F., Tavares, F.W., Cardozo-Filho, L.: High-pressure experimental data of CO2 + mitotane and CO2 + ethanol + mitotane mixtures. J. Chem. Eng. Data 56, 4333–4341 (2011). https://doi.org/10.1021/je101233k

    Article  CAS  Google Scholar 

  14. Chen, A.-Z., Li, L., Wang, S.-B., Zhao, C., Liu, Y.-G., Wang, G.-Y., Zhao, Z.: Nanonization of methotrexate by solution-enhanced dispersion by supercritical CO2. J. Supercrit. Fluids 67, 7–13 (2012). https://doi.org/10.1016/j.supflu.2012.03.004

    Article  CAS  Google Scholar 

  15. Vega Gonzalez, A., Tufeu, R., Subra, P.: High-pressure vapor−liquid equilibrium for the binary systems carbon dioxide + dimethyl sulfoxide and carbon dioxide + dichloromethane. J. Chem. Eng. Data 47, 492–495 (2002). https://doi.org/10.1021/je010202q

    Article  CAS  Google Scholar 

  16. Alcantara, M.L., Silva, P.H.R., Romanielo, L.L., Cardozo-Filho, L., Mattedi, S.: Effect of water on high-pressure ternary phase equilibria of CO2 + H2O + alkanolamine based ionic liquid. J. Mol. Liq. 306, 112775 (2020). https://doi.org/10.1016/j.molliq.2020.112775

    Article  CAS  Google Scholar 

  17. Zanette, A.F., Ferreira-Pinto, L., Giufrida, W.M., Zuber, A., Feirhmann, A.C., Castier, M., Cardozo-Filho, L., Cabral, V.F.: Vapor–liquid equilibrium data for carbon dioxide + (R, S)-1,2-Isopropylidene glycerol (Solketal) + oleic acid systems at high pressure. J. Chem. Eng. Data. 59, 1494–1498 (2014). https://doi.org/10.1021/je401051d

    Article  CAS  Google Scholar 

  18. Dohrn, R., Fonseca, J.M.S., Peper, S.: Experimental methods for phase equilibria at high pressures. Annu. Rev. Chem. Biomol. Eng. 3, 343–367 (2012). https://doi.org/10.1146/annurev-chembioeng-062011-081008

    Article  CAS  PubMed  Google Scholar 

  19. Rodriguez-Reartes, S., Cismondi, M., Franceschi, E., Corazza, M.L., Oliveira, J.V., Zabaloy, M.S.: High-pressure phase equilibria of systems carbon dioxide + n-eicosane and propane + n-eicosane. J. Supercrit. Fluids. 50, 193–202 (2009). https://doi.org/10.1016/j.supflu.2009.06.017

    Article  CAS  Google Scholar 

  20. Wu, J., Prausnitz, J.M.: Phase equilibria for systems containing hydrocarbons, water, and salt: an extended Peng−Robinson equation of state. Ind. Eng. Chem. Res. 37, 1634–1643 (1998). https://doi.org/10.1021/ie9706370

    Article  CAS  Google Scholar 

  21. Martens, W.N., Frost, R.L., Kristof, J., Theo Kloprogge, J.: Raman spectroscopy of dimethyl sulphoxide and deuterated dimethyl sulphoxide at 298 and 77 K. J. Raman Spectrosc. 33, 84–91 (2002). https://doi.org/10.1002/jrs.827

    Article  CAS  Google Scholar 

  22. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001). https://doi.org/10.1021/ie0003887

    Article  CAS  Google Scholar 

  23. Wolbach, J.P., Sandler, S.I.: Using molecular orbital calculations to describe the phase behavior of cross-associating mixtures. Ind. Eng. Chem. Res. 37, 2917–2928 (1998). https://doi.org/10.1021/ie970781l

    Article  CAS  Google Scholar 

  24. Levenberg, K.: A method for the solution of certain non-linear problems in least squares. Q. Appl. Math. 2, 164–168 (1944). https://doi.org/10.1090/qam/10666

    Article  Google Scholar 

  25. Marquardt, D.W.: An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math. 11, 431–441 (1963). https://doi.org/10.1137/0111030

    Article  Google Scholar 

  26. Wilding, W.V., Rowley, R.L., Oscarson, J.L.: DIPPR® Project 801 evaluated process design data. Fluid Phase Equilib. 150–151, 413–420 (1998). https://doi.org/10.1016/S0378-3812(98)00341-0

    Article  Google Scholar 

  27. Arce, P., Aznar, M.: Computation and modeling of tricritical phenomena in ternary and quaternary mixtures using the perturbed chain—statistical associating fluid theory equation of state. J. Supercrit. Fluids. 49, 135–142 (2009). https://doi.org/10.1016/j.supflu.2009.01.010

    Article  CAS  Google Scholar 

  28. Huang, S.H., Radosz, M.: Equation of state for small, large, polydisperse, and associating molecules. Ind. Eng. Chem. Res. 29, 2284–2294 (1990). https://doi.org/10.1021/ie00107a014

    Article  CAS  Google Scholar 

  29. Kordikowski, A., Schenk, A.P., Van Nielen, R.M., Peters, C.J.: Volume expansions and vapor–liquid equilibria of binary mixtures of a variety of polar solvents and certain near-critical solvents. J. Supercrit. Fluids. 8, 205–216 (1995). https://doi.org/10.1016/0896-8446(95)90033-0

    Article  CAS  Google Scholar 

  30. Ferreira-Pinto, L., de Araujo, P.C.C., Aranda Saldaña, M.D., Arce, P.F., Cardozo-Filho, L.: Experimental data and thermodynamics modeling (PC-SAFT EoS) of the {CO2 + acetone + pluronic F-127} system at high pressures. J. Chem. Eng. Data 64, 2186–2192 (2019). https://doi.org/10.1021/acs.jced.8b01163

    Article  CAS  Google Scholar 

  31. Hsieh, C.-M., Vrabec, J.: Vapor–liquid equilibrium measurements of the binary mixtures CO2 + acetone and CO2 + pentanones. J. Supercrit. Fluids. 100, 160–166 (2015). https://doi.org/10.1016/j.supflu.2015.02.003

    Article  CAS  Google Scholar 

  32. Arce, P.F., Aznar, M.: Computation and modeling of critical phenomena with the perturbed chain-statistical associating fluid theory equation of state. J. Supercrit. Fluids. 43, 408–420 (2008). https://doi.org/10.1016/j.supflu.2007.07.006

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leandro Ferreira-Pinto.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bacicheti, J.M.O., Oliveira, J.A., Barros, T.V. et al. Phase Equilibria of {Carbon Dioxide + Acetone + Dimethyl Sulfoxide} Systems: Experimental Data and Thermodynamic Modeling. J Solution Chem 51, 1292–1309 (2022). https://doi.org/10.1007/s10953-022-01196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01196-6

Keywords

Navigation