Skip to main content
Log in

Activity Coefficient and CO2 Solubility Studies of Aqueous Alkyl Ammonium Salts Using Electrolyte PC-SAFT EOS

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, the electrolyte PC-SAFT equation of state (EOS) was utilized to study the alkylammonium salts in aqueous solutions. In this regard, the mean ionic activity coefficient (MIAC) experimental data of thirteen binary salt–water systems were studied. For each ion, five adjustable parameters were fitted using the MIAC experimental data. The ion-based and fully dissociated approaches were used to optimize the model parameters. The average deviation between experimental data and the model calculated is about 5%. The results show that the electrolyte PC-SAFT EOS can reasonably correlate the MIACs of alkylammonium salts in aqueous solutions. In addition, the electrolyte PC-SAFT EOS was used to estimate the CO2 solubility in the aqueous tetrabutylammonium bromide solution. In this regard, the ion-specific parameters were used and a binary interaction coefficient between CO2 and cation was fitted to correlate the gas solubility at different temperatures. The results show that the electrolyte PC-SAFT EOS can estimate the CO2 solubility reasonably well from a quantitative point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Belvèze, L.S., Brennecke, J.F., Stadtherr, M.A.: Modeling of activity coefficients of aqueous solutions of quaternary ammonium salts with the Electrolyte-NRTL equation Ind. Eng. Chem. Res. 43, 815–825 (2004)

    Article  Google Scholar 

  2. Shahriari, R., Dehghani, M.R., Behzadi, B.: Thermodynamic modeling of aqueous ionic liquid solutions using PC-SAFT equation of state. Ind. Eng. Chem. Res. 51, 10274–10282 (2012)

    Article  CAS  Google Scholar 

  3. Aguirre, C.L., Cisternas, L.A., Valderrama, J.O.: Melting-point estimation of ionic liquids by a group contribution method. Int. J. Thermophys. 33, 34–46 (2012)

    Article  CAS  Google Scholar 

  4. Perisanu, S.: Correlation of activity coefficients of alkyl-ammonium salt solutions. J. Mol. Liq. 113, 21–27 (2004)

    Article  CAS  Google Scholar 

  5. Akbari, V., Dehghani, M.R., Borhani, T.N.G., Azarpour, A.: Activity coefficient modelling of aqueous solutions of alkyl ammonium salts using the extended UNIQUAC model. J. Solution Chem. 45, 1434–1452 (2016)

    Article  CAS  Google Scholar 

  6. Shahriari, R., Dehghani, M.R.: Prediction of thermodynamic properties of aqueous electrolyte solutions using equation of state. AIChE J. 63, 5083–5097 (2017)

    Article  CAS  Google Scholar 

  7. Sun, L., Liang, X., von Solms, N., Kontogeorgis, G.M.: Thermodynamic modeling of gas solubility in aqueous solutions of quaternary ammonium salts with the e-CPA equation of state. Fluid Phase Equilib. 507, 112423 (2020)

    Article  CAS  Google Scholar 

  8. Rayner, C.M., Barnes, D.C, Jakab, G., Schoolderman, C.: System for the Capture and Release of Acid Gases, US Patent, 20170001142A1, 2013.

  9. Vilas-Boas, S.M., Abranches, D.O., Crespo, E.A., Ferreira, O., Coutinho, J.A.P., Pinho, S.P.: Experimental solubility and density studies on aqueous solutions of quaternary ammonium halides, and thermodynamic modelling for melting enthalpy estimations. J. Mol. Liq. 300, 112281 (2020)

    Article  CAS  Google Scholar 

  10. Gross, J., Sadowski, G.: Perturbed-Chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  CAS  Google Scholar 

  11. Chapman, W.G., Gubbins, K.E., Jackson, G., Radosz, M.: New reference equation of state for associating liquids. Ind. Eng. Chem. Res. 29, 1709–1721 (1990)

    Article  CAS  Google Scholar 

  12. Blum, L., Hoeye, J.S.: Mean spherical model for asymmetric electrolytes. 2. Thermodynamic properties and the pair correlation function. J. Phys. Chem. 81, 1311–1316 (1977)

    Article  CAS  Google Scholar 

  13. Blum, L.: Mean spherical model for asymmetric electrolytes. Mol. Phys. 30, 1529–1535 (1975)

    Article  CAS  Google Scholar 

  14. Tan, S.P., Adidharma, H., Radosz, M.: Statistical associating fluid theory coupled with restricted primitive model to represent aqueous strong electrolytes. Ind. Eng. Chem. Res. 44, 4442–4452 (2005)

    Article  CAS  Google Scholar 

  15. Diamantonis, N.I., Economou, I.G.: Modeling the phase equilibria of a H2O–CO2 mixture with PC-SAFT and tPC-PSAFT equations of state. Mol. Phys. 110, 1205–1212 (2012)

    Article  CAS  Google Scholar 

  16. Ramdan, D., Najmi, M., Rajabzadeh, H., Elveny, M., Alizadeh, S.M.S., Shahriari, R.: Prediction of CO2 solubility in electrolyte solutions using the e-PHSC equation of state. J. Supercrit. Fluid 180, 105454 (2022)

    Article  CAS  Google Scholar 

  17. Novotny, P., Sohnel, O.: Densities of binary aqueous solutions of 306 inorganic substances. J. Chem. Eng. Data 33, 49–55 (1988)

    Article  CAS  Google Scholar 

  18. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover, London (1959)

    Google Scholar 

  19. Valtz, A., Chapoy, A., Coquelet, C., Paricaud, P., Richon, D.: Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 278.2 to 318.2K. Fluid Phase Equilib. 226, 333–344 (2004)

    Article  CAS  Google Scholar 

  20. Duan, Q.Y., Gupta, V.K., Sorooshian, S.: Shuffled complex evolution approach for effective and efficient global minimization. J. Optim. Theory Appl. 76, 501–521 (1993)

    Article  Google Scholar 

  21. Lagarias, J.C., Reeds, J.A., Wright, M.H., Wright, P.E.: Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM J. Optim. 9, 112–147 (1998)

    Article  Google Scholar 

  22. Lindenbaum, S., Boyd, G.E.: Osmotic and activity coefficients for the symmetrical tetraalkyl ammonium halides in aqueous solution at 25°. J. Phys. Chem. 68, 911–917 (1964)

    Article  CAS  Google Scholar 

  23. Blanco, L.H., Eliseo Amado, G., Calvo, J.C.: Osmotic and activity coefficients of dilute aqueous solutions of the series Me4NI to MeBu3NI at 298.15K. Fluid Phase Equilib. 268, 90–94 (2008)

    Article  CAS  Google Scholar 

  24. Bonner, O.D.: The osmotic and activity coefficients of some salts having relatively large molar volumes. J. Chem. Eng. Data 21, 498–499 (1976)

    Article  CAS  Google Scholar 

  25. Blanco, L.H., Amado, E., Avellaneda, J.A.: Isopiestic determination of the osmotic and activity coefficients of dilute aqueous solutions of the series MeEt3NI to HepEt3NI at 298.15K. Fluid Phase Equilib. 249, 147–152 (2006)

    Article  CAS  Google Scholar 

  26. Bonner, O.D.: Osmotic and activity coefficients of methyl-substituted ammonium chlorides. J. Chem. Soc. Faraday Trans. 1(77), 2515–2518 (1981)

    Article  Google Scholar 

  27. Bonner, O.D.: Osmotic and activity coefficients of methyl-substituted ammonium nitrates at 298.15 K. J. Chem. Eng. Data 26(1981), 148–149 (1981)

    Article  CAS  Google Scholar 

  28. Macaskill, J., Bates, R.G.: Osmotic and activity coefficients of monomethyl-, dimethyl- and trimethylammonium chlorides at 25° C. J. Solution Chem. 15, 323–330 (1986)

    Article  CAS  Google Scholar 

  29. Gregor, H.P., Rothenberg, M., Fine, N.: Molal activity coefficients of methane- and ethanesulfonic acids and their salts. J. Phys. Chem. 67, 1110–1112 (1963)

    Article  CAS  Google Scholar 

  30. Pabsch, D., Held, C., Sadowski, G.: Modeling the CO2 solubility in aqueous electrolyte solutions using ePC-SAFT. J. Chem. Eng. Data 65, 5768–5777 (2020)

    Article  CAS  Google Scholar 

  31. Hribar-Lee, B., Dill, K.A., Vlachy, V.: Receptacle model of salting-in by tetramethylammonium ions. J. Phys. Chem. B 114, 15085–15091 (2010)

    Article  CAS  Google Scholar 

  32. Wen, W.-Y., Hung, J.J.: Thermodynamics of hydrocarbon gases in aqueous tetraalkylammonium salt solutions. J. Phys. Chem. 74, 170–180 (1970)

    Article  CAS  Google Scholar 

  33. Born, M.: Volumen und Hydratations Warme der Ionen. Z. Phys. 1, 45–49 (1920)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Menglin Sun or Reza Shahriari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A: The Gibbs Free Energy of Solvation and Enthalpy of Hydration

Appendix A: The Gibbs Free Energy of Solvation and Enthalpy of Hydration

The Gibbs free energy of solvation and enthalpy of hydration of aqueous electrolyte solutions have been predicted using electrolyte PC-SAFT EOS by incorporating the Born solvation term into Eq. 1. The Born equation is used to account for the solvation energy as follows [33]:

$$\frac{{A}^{ \text{Born}}}{N{k}_{ \text{B}}T}=-\frac{{e}^{2}}{4\pi {k}_{ \text{B}}T{\varepsilon }_{0}}\left(1-\frac{1}{\varepsilon }\right)\sum_{i}\frac{{x}_{i}{z}_{i}^{2}}{{\sigma }_{i}}$$
(25)

Details can be found in our previous work [6]. In Tables 7 and 8, the Gibbs free energy and enthalpy of hydration of ordinary salts and alkylammonium salts have been presented.

Table 7 Prediction of Gibbs Free Energy and enthalpy of hydration (kJ·mol−1) of ordinary salts at 1 bar and 298.15 K
Table 8 Prediction of Gibbs free energy and enthalpy of hydration (kJ·mol−1) of alkylammonium salts at 1 bar and 298.15 K

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Cai, J. & Shahriari, R. Activity Coefficient and CO2 Solubility Studies of Aqueous Alkyl Ammonium Salts Using Electrolyte PC-SAFT EOS. J Solution Chem 51, 1229–1246 (2022). https://doi.org/10.1007/s10953-022-01184-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01184-w

Keywords

Navigation