Skip to main content
Log in

A Temperature-Dependent Thermodynamic Model Derived from Dissolution Enthalpy of Metal Chloride Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, a theoretical thermodynamic model based on dissolution enthalpy was established to predict the osmotic and mean ion activity coefficients of metal chloride aqueous solutions. The dissolution enthalpies of CuCl2, CoCl2 and MnCl2 hydrates were measured from 298.15 to 323.15 K with the molality range from 0.1 to 3.0 mol·kg−1. Then the dilution enthalpies can be further calculated at corresponding temperature and molality. Therefore, with arbitrary temperature and molality, the osmotic and mean ion activity coefficients of the three solutions within the experimental condition can be calculated through the established model. The calculated results were consistent with the published data which indicates the thermodynamic model was reliable and acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Liu, W.H., Mcphail, D.C.: Thermodynamic properties of copper complexes and copper transport in magmatic–hydrothermal solutions. Chem. Geol. 221, 21–39 (2005)

    Article  CAS  Google Scholar 

  2. Leclerc, N., Meux, E., Lecuire, J.M.: Hydrometallurgical recovery of zinc and lead from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. J. Hazard. Mater. 91, 257–270 (2002)

    Article  CAS  Google Scholar 

  3. Hu, G.P., Chen, D.S., Wang, L.N., Liu, J.C., Zhao, H.X., Liu, Y.H., Qi, T., Zhang, C.Q., Yu, P.: Extraction of vanadium from chloride solution with high concentration of iron by solvent extraction using D2EHPA. Sep. Purif. Technol. 125, 59–65 (2014)

    Article  CAS  Google Scholar 

  4. Millero, F.J.: The physical chemistry of natural waters. Pure Appl. Chem. 57, 1015–1024 (1985)

    Article  CAS  Google Scholar 

  5. Krumgalz, B.S., Millero, F.J.: Physico–chemical study of the dead sea waters. I. Activity coefficients of major ions in dead sea water. Mar. Chem. 11, 209–222 (1982)

    Article  CAS  Google Scholar 

  6. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE J. 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  7. Awakura, Y., Kawasaki, Y., Uno, A., Sato, K., Majima, H.: Activities of water and HCl in aqueous solution systems of HCl-MCln including CuCl2, NiCl2 and FeCl3. Hydrometallurgy 19, 37–157 (1987)

    Article  Google Scholar 

  8. Fan, M.Q., Liu, S., Sun, W.Q., Fei, Y., Pan, H., Shu, K.Y.: Controllable hydrogen generation and hydrolysis mechanism of AlLi/NaBH4 system activated by CoCl2 solution. Renew. Energy 46, 203–209 (2012)

    Article  CAS  Google Scholar 

  9. Varin, R.A., Zbroniec, L.: Fast and slow dehydrogenation of ball milled lithium alanate (LiAlH4) catalyzed with manganese chloride (MnCl2) as compared to nanometric nickel catalyst. J. Alloys Compd. 509S, 736S-739S (2011)

    Article  Google Scholar 

  10. Pitzer, K.S.: Electrolyte theory–improvements since Debye and Huckel. Accounts Chem. Res. 10, 454–460 (1977)

    Article  Google Scholar 

  11. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes: II. Activity coefficients for strong electrolytes with one and both ions univalent. J. Phys. Chem. 77, 2300–2308 (1973)

    Article  CAS  Google Scholar 

  12. Gupta, R.A.: Thermodynamics of electrolytes in mixed solvents. Application of Pitzer’s thermodynamic equations to activity coefficients of 1:1 electrolytes in methanol–water mixtures. J. Phys. Chem. 83, 2986–2990 (1979)

    Article  CAS  Google Scholar 

  13. Chaudhari, S.K., Patil, K.R.: Thermodynamic properties of aqueous solutions of lithium chloride. Phys. Chem. Liq. 40, 317–325 (2002)

    Article  CAS  Google Scholar 

  14. Phutela, R.C., Pitzer, K.S.: Thermodynamics of aqueous calcium chloride. J. Solution Chem. 12, 201–207 (1983)

    Article  CAS  Google Scholar 

  15. Gutiérrez-Valladares, E., Lukšič, M., Millán-Malo, B., Hribar-Lee, B., Vlachy, V.: Primitive model electrolytes. A comparison of the HNC approximation for the activity coefficient with Monte Carlo data. Condens. Matter Phys. 14, 190–197 (2012)

    Google Scholar 

  16. Yi, X., Hu, J.G., Zhang, X.Y., Sun, M., Liu, S.J.: A temperature–dependent thermodynamic model derived from heat capacity of metal chloride aqueous solutions. J. Chem. Eng. Data. 62, 4117–4127 (2017)

    Article  CAS  Google Scholar 

  17. Pitzer, K.S.: Thermodynamics of electrolytes: I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  18. Pitzer, K.S.: Activity Coefficients Electrolyte Solutions, 2nd edn. CRC Press, Boca Raton (2017)

    Google Scholar 

  19. Dai, P.K., Huang, H.Q., Ding, Z.Y., He, Y.N., Liu, S.J.: Osmotic coefficient and mean ion activity coefficient of NiCl2 aqueous solution at several temperatures. J. Chem Thermodyn. 100, 72–78 (2016)

    Article  CAS  Google Scholar 

  20. Kumasaki, M.: Calorimetric study on the decomposition of hydroxylamine in the presence of transition metals. J. Hazard. Mater. 115, 57–62 (2004)

    Article  CAS  Google Scholar 

  21. Miyake, A., Kimura, A., Ogawa, T., Satoh, Y., Inano, M.: Thermal hazard analysis of hydrazine and nitric acid mixtures. J. Therm. Anal. Calorim. 80, 515–518 (2005)

    Article  CAS  Google Scholar 

  22. Wagman, D.D., Evans, W.H., Parker, V.B., Schumm, R.H., Halow, I., Bailey, S.M., Churney, K.L., Nuttall, R.L.: The NBS tables of chemical thermodynamic properties: Selected values for inorganic and C1 and C2 organic substances in SI units. J. Phys. Chem. Ref. Data 11 (1982), supplement No.2.

  23. Robinson, R.A., Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part VI. The activity coefficients of manganese, cobalt, nickel and copper chloride in aqueous solution at 25 °C. Trans. Faraday Soc. 36, 1137–1138 (1940)

    Article  CAS  Google Scholar 

  24. Brown, J.B.: The constitution of cupric chloride in aqueous solution. Trans. R. Soc. NZ 77, 19–23 (1948)

    CAS  Google Scholar 

  25. Downes, C.J., Pitzer, K.S.: Binary mixtures formed from aqueous NaCl, Na2SO4, CuCl2, and CuSO4, at 25°C. J. Solution Chem. 5, 389–398 (1976)

    Article  CAS  Google Scholar 

  26. Rard, J.A.: Isopiestic investigation of water activities of aqueous nickel(2+) chloride and copper(2+) chloride solutions and the thermodynamic solubility product of nickel dichloride hexahydrate at 298.15 K. J. Chem. Eng. Data 37, 433–442 (1992)

    Article  CAS  Google Scholar 

  27. Goldberg, N.R.: Evaluated activity and osmotic coefficients for aqueous solutions: bi–univalent compounds of lead, copper, manganese, and uranium. J. Phys. Chem. Ref. Data 8, 1005–1050 (1979)

    Article  CAS  Google Scholar 

  28. Stokes, R.H.: A thermodynamic study of bivalent metal halides in aqueous solution. Part XVII—Revision of data for all 2:1 and 1:2 electrolytes at 25, and discussion of results. Trans. Faraday Soc. 44, 295–307 (1948)

    Article  CAS  Google Scholar 

  29. Stokes, R.H., Robinson, R.A.: Ionic hydration and activity in electrolyte solutions. J. Am Chem. Soc. 70, 1870 (1948)

    Article  CAS  Google Scholar 

  30. Downes, C.J.: Thermodynamics of mixed electrolyte solutions: the systems H2O–NaCl–CoCl2 and H2O–CaCl2−CoCl2 at 25° C. J. Solution Chem. 4, 191–204 (1975)

    Article  CAS  Google Scholar 

  31. Holmes, F.H., Mesmer, R.E.: Isopiestic studies of aqueous solutions at elevated temperatures IV. NiCl2 and CoCl2. J. Chem Thermodyn. 13, 131–137 (1981)

    Article  CAS  Google Scholar 

  32. Rard, J.A.: Isopiestic determination of the osmotic and activity coefficients of aqueous manganese(II) chloride, manganese(II) sulfate, and rubidium chloride at 25°C. J. Chem. Eng. Data 29, 443–450 (1984)

    Article  CAS  Google Scholar 

  33. Apelblat, A.: The vapour pressures of saturated aqueous solutions of potassium bromide, ammonium sulfate, copper(II) sulfate, iron(II) sulfate, and manganese(II) dichloride, at temperatures from 283 K to 308 K. J. Chem. Thermodyn. 25, 1513–1520 (1993)

    Article  CAS  Google Scholar 

  34. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, Second Revised Edition. Academic Press, New York (1959)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by National Basic Research Program of China (2014CB643401) and the National Natural Science Foundation of China (No.51134007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Yi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yi, X., Liu, Q., Ni, W. et al. A Temperature-Dependent Thermodynamic Model Derived from Dissolution Enthalpy of Metal Chloride Aqueous Solutions. J Solution Chem 51, 917–934 (2022). https://doi.org/10.1007/s10953-022-01183-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01183-x

Keywords

Navigation