Skip to main content
Log in

Solvent Effect and Preferential Solvation Analysis of Isophthalic Acid Solubility in Acetone (1) + Water (2) and Acetic Acid (1) + Water (2) Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Data on solubility of isophthalic acid in acetone (1) + water (2) and acetic acid (1) + water (2) mixtures over the full composition range were used to analyze solvent effect by using linear solvation energy relationships approach considering Kamlet, Abboud, and Taft parameters as solvent descriptors to provide detail information on the solute–solvent and solvent–solvent interactions. Solvent effect analysis revealed which types of interactions were the main essential characteristics of solvent mixtures for solubility variation. Results indicate that cavity term and hydrogen bonding interactions were the main contributors to solvent effect on solubility in aqueous mixtures studied here. The inverse Kirkwood–Buff integral method was used to determine and analyze the possibility of preferential solvation of isophthalic acid by each of solvents in aqueous binary mixtures. The local mole fraction of acetone and acetic acid in solvation shell of isophthalic acid was determined as a function of bulk mole fraction of solvents over the full composition range in binary mixtures. The extent of preferential solvation was discussed by considering the characteristics of isophthalic acid and pure solvents and their possible mutual interactions. In addition, COSMO-RS computation was used for qualitative analysis of intermolecular interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gabara, V.: High-performance fibers. In: Elvers, B. (ed.) Ullmann’s encyclopedia of industrial chemistry, pp. 1–22. Wiley, Hoboken (2002)

    Google Scholar 

  2. Schmidt, A., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Hart, E., Brumfield, M., De La Rosa, J., Portillo, V., Pugh, A., Sanchez, A., Acree, W.E., Abraham, M.H.: Determination of Abraham model solute descriptors for isophthalic acid from experimental solubility data in organic solvents at 298 K. Phys. Chem. Liq. 54(6), 747–757 (2016). https://doi.org/10.1080/00319104.2016.1149178

    Article  CAS  Google Scholar 

  3. Long, B., Yang, Z.: Measurements of the solubilties of m-phthalic acid in acetone, ethanol and acetic ether. Fluid Phase Equilib. 266(1), 38–41 (2008). https://doi.org/10.1016/j.fluid.2008.01.014

    Article  CAS  Google Scholar 

  4. Che, Y.-K., Qu, Y.-X., Wang, S.: Solubilities of terephthalic acid, phthalic acid, and isophthalic acid in tetrahydrofuran, cyclohexanone, 1,2-diethoxyethane, and acetophenone. J. Chem. Eng. Data 54(11), 3130–3132 (2009). https://doi.org/10.1021/je9001976

    Article  CAS  Google Scholar 

  5. Li, D.-Q., Liu, D.-Z., Wang, F.-A.: Solubilities of terephthalaldehydic, p-toluic, benzoic, terephthalic, and isophthalic acids in N-methyl-2-pyrrolidone from 295.65 K to 371.35 K. J. Chem. Eng. Data 46(1), 172–173 (2001). https://doi.org/10.1021/je000261o

    Article  CAS  Google Scholar 

  6. Long, B., Wang, Y., Zhang, R., Xu, J.: Measurement and correlation of the solubilities of m-phthalic acid in monobasic alcohols. J. Chem. Eng. Data 54(6), 1764–1766 (2009). https://doi.org/10.1021/je800520w

    Article  CAS  Google Scholar 

  7. Feng, L., Wang, Q., Li, X.: Solubilities of 1,3,5-benzenetricarboxylic acid and 1,3-benzenedicarboxylic acid in acetic acid + water solvent mixtures. J. Chem. Eng. Data 53(11), 2501–2504 (2008). https://doi.org/10.1021/je800353s

    Article  CAS  Google Scholar 

  8. Long, B., Xia, Y., Deng, Z., Ding, Y.: Understanding the enhanced solubility of 1,3-benzenedicarboxylic acid in polar binary solvents of (acetone + water) at various temperatures. J. Chem. Thermodyn. 105, 105–111 (2017). https://doi.org/10.1016/j.jct.2016.10.011

    Article  CAS  Google Scholar 

  9. Tao, B., Sheng, Z., Luo, W., Sheng, X., Wang, Q.: Measurement and correlation for solubilities of isophthalic acid and m-toluic acid in binary acetic acid + water and acetic acid + m-xylene solvent mixtures. J. Mol. Liq. 262, 549–555 (2018). https://doi.org/10.1016/j.molliq.2018.04.086

    Article  CAS  Google Scholar 

  10. Long, B.-W., Wang, L.-S., Wu, J.-S.: Solubilities of 1,3-benzenedicarboxylic acid in water + acetic acid solutions. J. Chem. Eng. Data 50(1), 136–137 (2005). https://doi.org/10.1021/je049784c

    Article  CAS  Google Scholar 

  11. Ning, S., Chen, W., Pan, T., Cheng, Y., Wang, L., Li, X.: Solubilities of isophthalic acid in ternary mixtures of acetic acid + water + benzoic acid from 292.55 to 372.10 K. J. Chem. Eng. Data 63(5), 1363–1369 (2018). https://doi.org/10.1021/acs.jced.7b00958

    Article  CAS  Google Scholar 

  12. Long, B., Li, Z., Li, T., Ding, Y.: Characterization of the solubility of m-phthalic acid in co-solvent mixture of acetone and ethanol at different temperatures. J. Mol. Liq. 296, 111759 (2019). https://doi.org/10.1016/j.molliq.2019.111759

    Article  CAS  Google Scholar 

  13. Lorz, P.M., Towae, F.K., Enke, W., Jäckh, R., Bhargava, N., Hillesheim, W.: Phthalic acid and derivatives. In: Elvers, B. (ed.) Ullmann’s encyclopedia of industrial chemistry. Wiley, Hoboken (2002)

    Google Scholar 

  14. Taft, R.W., Abboud, J.-L.M., Kamlet, M.J., Abraham, M.H.: Linear solvation energy relations. J. Solution Chem. 14(3), 153–186 (1985). https://doi.org/10.1007/bf00647061

    Article  CAS  Google Scholar 

  15. Gao, Q., Zhu, P., Zhao, H., Farajtabar, A., Jouyban, A., Acree, W.E.: Solubility, Hansen solubility parameter, solvent effect and preferential solvation of benorilate in aqueous mixtures of isopropanol, N, N-dimethylformamide, ethanol and N-methyl-2-pyrrolidinone. J. Chem. Thermodyn. 161, 106517 (2021). https://doi.org/10.1016/j.jct.2021.106517

    Article  CAS  Google Scholar 

  16. Talebi, J., Saadatjou, N., Farajtabar, A.: Hesperetin solubility in aqueous co-solvent mixtures of methanol and ethanol: solute descriptors, solvent effect and preferential solvation analysis. J. Solution Chem. 49(2), 179–194 (2020). https://doi.org/10.1007/s10953-020-00948-6

    Article  CAS  Google Scholar 

  17. Zheng, M., Farajtabar, A., Zhao, H.: Solubility of 4-amino-2,6-dimethoxypyrimidine in aqueous co-solvent mixtures revisited: solvent effect, transfer property and preferential solvation analysis. J. Mol. Liq. 288, 111033 (2019). https://doi.org/10.1016/j.molliq.2019.111033

    Article  CAS  Google Scholar 

  18. Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140(1), 61–67 (2008). https://doi.org/10.1016/j.molliq.2008.01.005

    Article  CAS  Google Scholar 

  19. Cárdenas, Z.J., Jiménez, D.M., Almanza, O.A., Jouyban, A., Martínez, F., Acree, W.E.: Solubility and preferential solvation of caffeine and theophylline in methanol + water mixtures at 298.15 K. J. Solution Chem. 46(8), 1605–1624 (2017). https://doi.org/10.1007/s10953-017-0666-z

    Article  CAS  Google Scholar 

  20. Holguín, A.R., Delgado, D.R., Martínez, F., Marcus, Y.: Solution thermodynamics and preferential solvation of meloxicam in propylene glycol +water mixtures. J. Solution Chem. 40(12), 1987–1999 (2011). https://doi.org/10.1007/s10953-011-9769-0

    Article  CAS  Google Scholar 

  21. Li, Z., He, L., Yu, X.: Solubility measurements and the dissolution behavior of malonic acid in binary solvent mixtures of (2-propanol + ethyl acetate) by IKBI calculations. J. Solution Chem. 48(4), 427–444 (2019). https://doi.org/10.1007/s10953-019-00853-7

    Article  CAS  Google Scholar 

  22. Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 172(1), 43–72 (2000). https://doi.org/10.1016/S0378-3812(00)00357-5

    Article  CAS  Google Scholar 

  23. Klamt, A.: Conductor-like screening model for real solvents: a new approach to the quantitative calculation of solvation phenomena. J. Phys. Chem. 99(7), 2224–2235 (1995). https://doi.org/10.1021/j100007a062

    Article  CAS  Google Scholar 

  24. Eckert, F., Klamt, A.: Fast solvent screening via quantum chemistry: COSMO-RS approach. AlChE J. 48(2), 369–385 (2002). https://doi.org/10.1002/aic.690480220

    Article  CAS  Google Scholar 

  25. Feng, X., Farajtabar, A., Lin, H., Chen, G., He, Y., Li, X., Zhao, H.: Equilibrium solubility, solvent effect and preferential solvation of chlorhexidine in aqueous co-solvent solutions of (methanol, ethanol, N, N-dimethylformamide and 1,4-dioxane). J. Chem. Thermodyn. 129, 148–158 (2019). https://doi.org/10.1016/j.jct.2018.09.008

    Article  CAS  Google Scholar 

  26. Li, Y., Farajtabar, A., Hongkun, Z.: Preferential solvation of vitamin C in binary solvent mixtures formed by methanol, ethanol, n-propanol, isopropanol and water. J. Solution Chem. 48(2), 200–211 (2019). https://doi.org/10.1007/s10953-019-00857-3

    Article  CAS  Google Scholar 

  27. Bao, Y., Farajtabar, A., Zheng, M., Zhao, H., Li, Y.: Thermodynamic solubility modelling, solvent effect and preferential solvation of naftopidil in aqueous co-solvent solutions of (n-propanol, ethanol, isopropanol and dimethyl sulfoxide). J. Chem. Thermodyn. 133, 161–169 (2019). https://doi.org/10.1016/j.jct.2019.02.016

    Article  CAS  Google Scholar 

  28. Pirhayati, F.H., Mirzaeei, S., Rahimpour, E., Mohammadi, G., Martinez, F., Taghe, S., Jouyban, A.: Experimental and computational approaches for measuring minoxidil solubility in propylene glycol + water mixtures at different temperatures. J. Mol. Liq. 280, 334–340 (2019). https://doi.org/10.1016/j.molliq.2019.01.120

    Article  CAS  Google Scholar 

  29. Cárdenas, Z.J., Jiménez, D.M., Almanza, O.A., Jouyban, A., Martínez, F., Acree, W.E.: Solubility and preferential solvation of sulfanilamide, sulfamethizole and sulfapyridine in methanol + water mixtures at 298.15 K. J. Solution Chem. 45(10), 1479–1503 (2016). https://doi.org/10.1007/s10953-016-0513-7

    Article  CAS  Google Scholar 

  30. Eckert, F., Klamt, A.: COSMOtherm. COSMOlogic GmbH & Co. KG, Leverkusen (2014)

    Google Scholar 

  31. Ahlrichs, R., Bär, M., Häser, M., Horn, H., Kölmel, C.: Electronic structure calculations on workstation computers: the program system turbomole. Chem. Phys. Lett. 162(3), 165–169 (1989)

    Article  CAS  Google Scholar 

  32. Marcus, Y.: The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J. Chem. Soc. Perkin Trans. 2, 1751–1758 (1994). https://doi.org/10.1039/P29940001751

    Article  Google Scholar 

  33. Hansen, C.M.: Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  34. ACD/ChemSketch. In: Advanced chemistry development, Inc., Toronto, ON, Canada, (2019)

  35. Haase, R., Pehlke, M.: Thermodynamic excess functions for the liquid system water + acetic acid from calorimetric data. Zeitschrift für Naturforschung A 32(5), 507–510 (1977). https://doi.org/10.1515/zna-1977-0523

    Article  Google Scholar 

  36. Im, J.-N., Park, S.-S., Lee, H.-O.: Isothermal vapor–liquid equilibrium for the binary system acetone-water by the total pressure method. Korean Chem. Eng. Res. 12(3), 179–179 (1974)

    Google Scholar 

  37. Apelblat, A., Manzurola, E.: Excess molar volumes of formic acid + water acetic acid + water and propionic acid + water systems at 288.15, 298.15 and 308.15 K. Fluid Phase Equilib. 32(2), 163–193 (1987). https://doi.org/10.1016/0378-3812(87)85035-5

    Article  CAS  Google Scholar 

  38. Estrada-Baltazar, A., De León-Rodríguez, A., Hall, K.R., Ramos-Estrada, M., Iglesias-Silva, G.A.: Experimental densities and excess volumes for binary mixtures containing propionic acid, acetone, and water from 283.15 K to 323.15 K at atmospheric pressure. J. Chem. Eng. Data 48(6), 1425–1431 (2003). https://doi.org/10.1021/je030102f

    Article  CAS  Google Scholar 

  39. Marcus, Y.: Solvent mixtures: properties and selective solvation. Marcel Dekker, New York (2002)

    Book  Google Scholar 

  40. Delgado, D.R., Martínez, F.: Preferential solvation of sulfadiazine, sulfamerazine and sulfamethazine in ethanol + water solvent mixtures according to the IKBI method. J. Mol. Liq. 193, 152–159 (2014). https://doi.org/10.1016/j.molliq.2013.12.021

    Article  CAS  Google Scholar 

  41. Tooski, H.F., Jabbari, M., Farajtabar, A.: Solubility and preferential solvation of the flavonoid naringenin in some aqueous/organic solvent mixtures. J. Solution Chem. 45(12), 1701–1714 (2016). https://doi.org/10.1007/s10953-016-0526-2

    Article  CAS  Google Scholar 

  42. Martínez, F., Jouyban, A., Acree, W.E.: Equilibrium solubility of trans-resveratrol in acetone (1) + water (2) mixtures: correlation, dissolution thermodynamics and preferential solvation. Phys. Chem. Liq. (2022). https://doi.org/10.1080/00319104.2021.2021522

    Article  Google Scholar 

  43. Cong, Y., Du, C., Xing, K., Bian, Y., Li, X., Wang, M.: Investigation on co-solvency, solvent effect, Hansen solubility parameter and preferential solvation of fenbufen dissolution and models correlation. J. Mol. Liq. 348, 118415 (2022). https://doi.org/10.1016/j.molliq.2021.118415

    Article  CAS  Google Scholar 

  44. Zheng, M., Xu, R., Chen, G., Chen, J., Zhao, H.: Commentary and further analysis concerning “experimental determination of solubility and metastable zone width of 3,4-bis(3-nitrofurazan-4-yl)furoxan (DNTF) in (acetic acid + water) systems from (298.15 K–338.15 K).” Fluid Phase Equilib. 479, 35–40 (2019). https://doi.org/10.1016/j.fluid.2018.09.020

    Article  CAS  Google Scholar 

  45. Hvidt, A.: Interactions of water with nonpolar solutes. Annu. Rev. Biophys. Bioeng. 12(1), 1–20 (1983). https://doi.org/10.1146/annurev.bb.12.060183.000245

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Farajtabar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghalandari, A., Saadati, Z., Goodajdar, B.M. et al. Solvent Effect and Preferential Solvation Analysis of Isophthalic Acid Solubility in Acetone (1) + Water (2) and Acetic Acid (1) + Water (2) Mixtures. J Solution Chem 51, 1148–1161 (2022). https://doi.org/10.1007/s10953-022-01178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01178-8

Keywords

Navigation