Skip to main content

Advertisement

Log in

Protonation of Chelidamic Acid: Thermodynamic Analysis and Crystal Structure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Thermodynamics of the protonation of chelidamic acid (4-oxo-1,4-dihydropyridine-2,6-dicarboxylic acid) was studied using potentiometry and calorimetry in 0.1 mol·L− 1 NaClO4 solution at 298 K under standard pressure (p = 0.1 MPa). There are three successive protonation steps. The protonation constants of each step (log10K) are calculated as 10.74 ± 0.01, 3.22 ± 0.02, and 1.63 ± 0.03. The first two protonation steps are exothermic, while the last step is endothermic. All the protonation steps are mainly driven by entropy. The three protonation states (HL2−, H2L and H3L) were analyzed using the 1 H NMR spectra and crystal structure. The results confirm that the order of successive protonation sites is the pyridine-N (HL2−), pyridinol-OH (H2L), and carboxylate oxygen atom (H3L).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aliabadi, A., Hakimi, M., Hosseinabadi, F., Motieiyan, E., Rodrigues, V.H.N., Ghadermazi, M., Marabello, D., Abdolmaleki, S.: Investigation of X-Ray crystal structure and in vitro cytotoxicity of two Ga(III) complexes containing pyridine dicarboxylic acid derivatives and 2-aminobenzimidazole. J. Mol. Struct. 1223, 129005 (2021). https://doi.org/10.1016/j.molstruc.2020.129005

    Article  CAS  Google Scholar 

  2. Abdolmaleki, S., Ghadermazi, M., Aliabadi, A.: Novel Tl(III) complexes containing pyridine-2,6-dicarboxylate derivatives with selective anticancer activity through inducing mitochondria-mediated apoptosis in A375 cells. Sci. Rep. 11(1), 15699 (2021). https://doi.org/10.1038/s41598-021-95278-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Yang, L., la Cour, A., Anderson, O.P., Crans, D.C.: 4-Hydroxypyridine-2,6-dicarboxylatodioxovanadate(v) complexes: solid state and aqueous chemistry. Inorg. Chem. 41(24), 6322–6331 (2002). https://doi.org/10.1021/ic0201598

    Article  CAS  PubMed  Google Scholar 

  4. Eshtiagh-Hosseini, H., Mirzaei, M., Zarghami, S., Bauzá, A., Frontera, A., Mague, J.T., Habibi, M., Shamsipur, M.: Crystal engineering with coordination compounds of 2,6-dicarboxy-4-hydroxypyridine and 9-aminoacridine fragments driven by different nature of the face-to-face π⋯π stacking. CrystEngComm. 16(7), 1359–1377 (2014). https://doi.org/10.1039/C3CE41730A

    Article  CAS  Google Scholar 

  5. Shams, H., Derikvand, Z., Dusek, M., Eigner, V., Shokrollahi, A., Refahi, M., Azadbakht, A.: Solution and solid-state studies of a new supramolecular proton transfer salt and its VO2 complex constructed with chelidamic acid and 3,4-diaminopyridine. J Iran. Chem Soc. 14(4), 811–822 (2017). https://doi.org/10.1007/s13738-016-1031-7

    Article  CAS  Google Scholar 

  6. Yang, W., Dang, S., Wang, H., Tian, T., Pan, Q.-J., Sun, Z.-M.: Synthesis, structures, and properties of uranyl hybrids constructed by a variety of mono- and polycarboxylic acids. Inorg. Chem. 52(21), 12394–12402 (2013). https://doi.org/10.1021/ic4012444

    Article  CAS  PubMed  Google Scholar 

  7. Ooms, K.J., Bolte, S.E., Smee, J.J., Baruah, B., Crans, D.C., Polenova, T.: Investigating the vanadium environments in hydroxylamido V(V) dipicolinate complexes using 51V NMR spectroscopy and density functional theory. Inorg. Chem. 46(22), 9285–9293 (2007). https://doi.org/10.1021/ic7012667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Derikvand, Z., Olmstead, M.M., Mercado, B.Q., Shokrollahi, A., Shahryari, M.: Solution and solid state studies of three new supramolecular compounds of zinc(II), nickel(II) and uranium(VI) with chelidamic acid and 9-aminoacridine. Inorg. Chim. Acta. 406, 256–265 (2013). https://doi.org/10.1016/j.ica.2013.04.041

    Article  CAS  Google Scholar 

  9. Ghasemi, K., Ghasemi, F., Rezvani, A.R., Graiff, C., Notash, B.: Potential antidiabetic drugs of metformin with insulin-enhancing anions [VO2(Dipic)] and [VO2(Dipic-OH)]: synthesis, characterization and X-ray crystal structure. Polyhedron. 102, 239–245 (2015). https://doi.org/10.1016/j.poly.2015.09.053

    Article  CAS  Google Scholar 

  10. Ghasemi, F., Ghasemi, K., Rezvani, A.R., Graiff, C.: Piperazine as counter ion for insulin-enhancing anions [VO2(Dipic-OH)]: SYNTHESIS, CHARACTERIZATion and X-Ray crystal structure. J. Mol. Struct. 1103, 20–24 (2016). https://doi.org/10.1016/j.molstruc.2015.09.005

    Article  CAS  Google Scholar 

  11. George, M.R., Critchley, P.E., Whitehead, G.F.S., Bailey, A.J., Cuda, F., Murdin, B.N., Grossel, M.C., Curry, R.J.: Modified pyridine-2,6-dicarboxylate acid ligands for sensitization of near-infrared luminescence from lanthanide ions (Ln3+ = Pr3+, Nd3+, Gd3+, Dy3+, Er3+). J. Lumin. 230, 117715 (2021). https://doi.org/10.1016/j.jlumin.2020.117715

    Article  CAS  Google Scholar 

  12. Feng, X., Liu, J., Li, T.-F., Lei, P.-P.: Crystal structure of dimethylammonium triaquabis(4-hydroxypyridine- 2,6-dicarboxylato)samarium(iii) dihydrate, [C2H8N][Sm(H2O)3(C7H3NO5)2] · 2H2O. Z. Kristallogr. NCS. 226(1), 80–82 (2011). https://doi.org/10.1524/ncrs.2011.0039

    Article  CAS  Google Scholar 

  13. Zou, J.-P., Luo, S.-L., Li, M.-J., Tang, X.-H., Xing, Q.-J., Peng, Q., Guo, G.-C.: Syntheses, crystal structures, and magnetic and luminescent properties of a series of lanthanide coordination polymers with chelidamic acid ligand. Polyhedron. 29(13), 2674–2679 (2010). https://doi.org/10.1016/j.poly.2010.06.008

    Article  CAS  Google Scholar 

  14. Wu, S.-L., Zou, J.-P., Chen, M.-H., Yang, H.-B., Li, M.-J., Luo, X.-B., Luo, F., Wu, M.-F., Guo, G.-C.: Effect of synthetic conditions on the structures and properties of metal complexes with chelidamic acid and 4,4′-bipyridyl. Polyhedron. 48(1), 58–67 (2012). https://doi.org/10.1016/j.poly.2012.08.082

    Article  CAS  Google Scholar 

  15. Derikvand, Z., Nemati, A., Shokrollahi, A., Zarghampour, F.: Synthesis, characterization, spectroscopic, crystal structures and solution studies of two coordination compounds of zinc(II) and iron(III) based on chelidamic acid and acridine. Inorg. Chim. Acta. 392, 362–373 (2012). https://doi.org/10.1016/j.ica.2012.03.034

    Article  CAS  Google Scholar 

  16. Soleimannejad, J., Nazarnia, E.: The effect of ligand substituent on crystal packing: structural and theoretical studies of two Ga(III) supramolecular compounds. J. Mol. Struct. 1116, 207–217 (2016). https://doi.org/10.1016/j.molstruc.2016.03.047

    Article  CAS  Google Scholar 

  17. Feng, X., Li, G.-F., Li, T.-F., Wang, L.-Y.: Hydrothermal syntheses, crystal structures, and properties of two lanthanide complexes based on the 4-hydroxy pyridine 2, 6-dicarboxylate and water ligands. Synth. React. Inorg. M. 41(3), 250–257 (2011). https://doi.org/10.1080/15533174.2011.555855

    Article  CAS  Google Scholar 

  18. Mahjoobizadeh, M., Mirzaei, M., Bauzá, A., Lippolis, V., Aragoni, M.C., Shamsipur, M., Ghanbari, M., Frontera, A.: Coordination behavior of chelidamic acid with VV, NiII, FeIII, and CaII: syntheses, X-ray characterization and DFT studies. ChemistrySelect. 1(8), 1556–1566 (2016). https://doi.org/10.1002/slct.201600150

    Article  CAS  Google Scholar 

  19. Crans, D.C., Mahroof-Tahir, M., Johnson, M.D., Wilkins, P.C., Yang, L., Robbins, K., Johnson, A., Alfano, J.A., Godzala, M.E., Austin, L.T., Willsky, G.R.: Vanadium(IV) and vanadium(V) complexes of dipicolinic acid and derivatives. synthesis, X-Ray structure, solution state properties: and effects in rats with STZ-induced diabetes. Inorg. Chim. Acta. 356, 365–378 (2003). https://doi.org/10.1016/S0020-1693(03)00430-4

    Article  CAS  Google Scholar 

  20. Porter, T.G., Martin, D.L.: Chelidonic acid and other conformationally restricted substrate analogues as inhibitors of rat brain glutamate decarboxylase. Biochem. Pharmacol. 34(23), 4145–4150 (1985). https://doi.org/10.1016/0006-2952(85)90207-2

    Article  CAS  PubMed  Google Scholar 

  21. Park, H., Lee, S.: Determination of the active site protonation state of Β-secretase from molecular dynamics simulation and docking experiment: implications for structure-based inhibitor design. J. Am. Chem. Soc. 125(52), 16416–16422 (2003). https://doi.org/10.1021/ja0304493

    Article  CAS  PubMed  Google Scholar 

  22. Li, X., Zhang, Z., Endrizzi, F., Martin, L.R., Luo, S., Rao, L.: Effect of temperature on the protonation of N-(2-Hydroxyethyl)Ethylenediamine-N,N′,N′-triacetic acid in aqueous solutions: potentiometric and calorimetric studies. J. Chem. Thermodyn. 85, 35–41 (2015). https://doi.org/10.1016/j.jct.2014.12.026

    Article  CAS  Google Scholar 

  23. Liu, B., Dong, L., Yu, Q., Li, X., Wu, F., Tan, Z., Luo, S.: Thermodynamic study on the protonation reactions of glyphosate in aqueous solution: potentiometry, calorimetry and NMR spectroscopy. J. Phys. Chem. B. 120(9), 2132–2137 (2016). https://doi.org/10.1021/acs.jpcb.5b11550

    Article  CAS  PubMed  Google Scholar 

  24. Zhu, L., Liu, B., Yang, X., Zhuo, L., Mu, W., Chen, Y., Yang, Y., Wei, H., Li, X.: Complexation of 1,3-diamino-2-hydroxypropane-N,N,N’,N’-tetraacetic acid (DHPTA) with heavy lanthanides (Tb3+, Ho3+, Lu3+) in aqueous solution. J Solut. Chem. 49(2), 166–178 (2020). https://doi.org/10.1007/s10953-020-00950-y

    Article  CAS  Google Scholar 

  25. Li, Q., Liu, B., Mu, W., Yu, Q., Tian, Y., Liu, G., Yang, Y., Li, X., Luo, S.: Protonation states of glufosinate in aqueous solution. J Solut. Chem. 47(4), 705–714 (2018). https://doi.org/10.1007/s10953-018-0751-y

    Article  CAS  Google Scholar 

  26. Liu, B., Tian, Y., Yu, Q., Li, Q., Mu, W., Tan, Z., Wu, F., Wang, D., Li, X.: Determination of protonation constants of o-phospho-l-serine in aqueous solution: potentiometry, microcalorimetry, NMR spectroscopy and quantum chemical calculations. J Solut. Chem. 46(12), 2281–2292 (2017). https://doi.org/10.1007/s10953-017-0696-6

    Article  CAS  Google Scholar 

  27. Li, Q., Liu, B., Tian, Y., Yu, Q., Mu, W., Wei, H., Wang, D., Li, X., Luo, S.: Thermodynamics of the protonation of an analogue of glyphosate, N-(phosphonomethyl)-L-proline, in aqueous solutions. J Solut. Chem. 46(5), 1048–1058 (2017). https://doi.org/10.1007/s10953-017-0620-0

    Article  CAS  Google Scholar 

  28. Li, X., Lu, J., Mu, W., Chen, B., Luo, D., Liu, B., Yang, Y., Wei, H., Peng, S.: The difference of uranyl (UO22+) complexes with nitrilotri–3–propanoic acid and tris(2–carboxyethyl) phosphine: N–tricarboxylate versus P–tricarboxylate. Inorg. Chim. Acta. 530, 120675 (2022). https://doi.org/10.1016/j.ica.2021.120675

    Article  CAS  Google Scholar 

  29. Bretti, C., Giuffrè, O., Lando, G., Sammartano, S.: Modeling solubility and acid–base properties of some amino acids in aqueous Nacl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures. SpringerPlus. 5(1), 928 (2016). https://doi.org/10.1186/s40064-016-2568-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Soleimani, F., Karimi, R., Gharib, F.: Thermodynamic studies on protonation constant of acyclovir at different ionic strengths. J Solut. Chem. 45(6), 920–931 (2016). https://doi.org/10.1007/s10953-016-0478-6

    Article  CAS  Google Scholar 

  31. Fuentes-Martínez, Y., Godoy-Alcántar, C., Medrano, F., Dikiy, A., Yatsimirsky, A.K.: Protonation of Kanamycin A: Detailing of thermodynamics and protonation sites assignment. Bioorg. Chem. 38(4), 173–180 (2010). https://doi.org/10.1016/j.bioorg.2010.04.003

    Article  CAS  PubMed  Google Scholar 

  32. Meloun, M., Ferenčíková, Z., Niesnerová, I., Pekárek, T.: Thermodynamic protonation constants of vardenafil by the nonlinear regression of multiwavelength pH-spectrophotometric titration data. Cent. Eur. J. Chem. 11(2), 271–279 (2013). https://doi.org/10.2478/s11532-012-0150-y

    Article  CAS  Google Scholar 

  33. El-Dossoki, F.I., Protonation and Solvation Thermodynamics of some naphthol derivatives in KCl aqueous solution of different ionic strengths. J. Chem.: 2016, 7234320 (2016). https://doi.org/10.1155/2016/7234320

  34. Dumpala, R.M.R., Rawat, N., Tomar, B.S.: Protonation of pyridine monocarboxylate-N-oxides – determination of thermodynamic, absorbance and ion interaction parameters. ChemistrySelect. 2(2), 820–829 (2017). https://doi.org/10.1002/slct.201601322

    Article  Google Scholar 

  35. Covington, A.K., Paabo, M., Robinson, R.A., Bates, R.G.: Use of the glass electrode in deuterium oxide and the relation between the standardized pD (paD) Scale and the operational pH in heavy water. Anal. Chem. 40(4), 700–706 (1968). https://doi.org/10.1021/ac60260a013

    Article  CAS  Google Scholar 

  36. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J., Howard, J.A.K., Puschmann, H.: Olex2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 42(2), 339–341 (2009). https://doi.org/10.1107/S0021889808042726

    Article  CAS  Google Scholar 

  37. Sheldrick, G.: Crystal structure refinement with Shelxl. Acta Cryst. C71(1), 3–8 (2015). DOI:https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  38. Ramić, E., Eichel, R.-A., Dinse, K.-P., Titz, A., Schmidt, B.: Complexation of copper(II) – chelidamate: a multifrequency-pulsed electron paramagnetic resonance and electron nuclear double resonance analysis. J. Phys. Chem. B. 110(41), 20655–20663 (2006). https://doi.org/10.1021/jp061940u

    Article  CAS  PubMed  Google Scholar 

  39. Fandos, R., Hernández, C., Otero, A., Pacheco, J., Rodríguez, A.M., Ruiz, M.J., Organero, J.: Experimental and theoretical studies on the reactivity of titanium chelidamate complexes: the significant role of the hydroxide pyridine moiety. Organometallics. 37(20), 3515–3523 (2018). https://doi.org/10.1021/acs.organomet.8b00209

    Article  CAS  Google Scholar 

  40. Jakusch, T., Jin, W., Yang, L., Kiss, T., Crans, D.C.: Vanadium(IV/V) speciation of pyridine-2,6-dicarboxylic acid and 4-hydroxy-pyridine-2,6-dicarboxylic acid complexes: potentiometry, EPR spectroscopy and comparison across oxidation states. J. Inorg. Biochem. 95(1), 1–13 (2003). https://doi.org/10.1016/S0162-0134(03)00090-4

    Article  CAS  PubMed  Google Scholar 

  41. Bag, S.P., Fernando, Q., Freiser, H.: The influence of metal chelation on the structure of chelidamic acid. Inorg. Chem. 1(4), 887–890 (1962). https://doi.org/10.1021/ic50004a037

    Article  CAS  Google Scholar 

  42. Albert, A., Phillips, J.N.: 264. Ionization constants of heterocyclic substances. Part II. Hydroxy-derivatives of nitrogenous six-membered ring-compounds. J. Chem. Soc. 1294–1304 (1956). https://doi.org/10.1039/JR9560001294

  43. Anderegg, G.: Pyridinderivate als Komplexbildner IV. Die Metallkomplexe der Chelidamsäure. Helv. Chim. Acta. 46(3), 1011–1017 (1963). https://doi.org/10.1002/hlca.19630460331

    Article  CAS  Google Scholar 

  44. Martell, A.E., Smith, R.M., Motekaitis, R.J., Nist Standard Reference Database 46: NIST Critically Selected Stability Constants of Metal Complexes, Version 8.0. 2004

  45. Choppin, G.R., Strazik, W.F.: Complexes of trivalent lanthanide and actinide ions. I. Outer-sphere ion pairs. Inorg. Chem. 4(9), 1250–1254 (1965). https://doi.org/10.1021/ic50031a003

    Article  CAS  Google Scholar 

  46. Choppin, G.R., Graffeo, A.J.: Complexes of trivalent lanthanide and actinide ions. II. Inner-sphere complexes. Inorg. Chem. 4(9), 1254–1257 (1965). https://doi.org/10.1021/ic50031a004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 21976165, 22076175, 22006141, and U1830202).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bijun Liu, Shuming Peng or Xingliang Li.

Ethics declarations

Supporting Information

Details of potentiometry, microcalorimetry, and crystal information file of chelidamic acid monohydrate (CCDC 2102381).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Supplementary Material 2

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, B., Lu, J., Mu, W. et al. Protonation of Chelidamic Acid: Thermodynamic Analysis and Crystal Structure. J Solution Chem 51, 1187–1198 (2022). https://doi.org/10.1007/s10953-022-01164-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01164-0

Keywords

Navigation