Skip to main content
Log in

Thermodynamic, excess Properties and Intermolecular interactions of ionic liquid 1- Ethyl-3-Methylimidazolium thiocyanate and propylene carbonate mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities, dynamic viscosities, and electrical conductivities of the ionic liquid (IL) 1-ethyl-3-methylimidazolium thiocyanate ([C2mim][SCN]) and its mixtures with propylene carbonate(PC) were measured as functions of temperature over the whole composition range at atmospheric pressure. The excess molar volumes (V E) and dynamic viscosity deviations (Δη) of the mixtures were calculated and the change of V E and Δη were fitted by the Redlich–Kister (R–K) polynomial equation. The temperature dependences of dynamic viscosity and electrical conductivity of the mixture were graphically described by the Vogel–Fulcher–Tammann (VFT) equation. The Casteel–Amis four-parameter (C–A) equation was used to described the electrical conductivities dependences of IL mole fraction. To describe the intermolecular interactions of the mixtures, the optimized structures and energetics of each component of the mixture are calculated by DFT method. The hydrogen bonding between 1-ethyl-3-methylimidazolium cation([C2mim]+) and PC are enhanced, and the addition of PC can weaken the interaction between the [C2mim]+ and [SCN].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Vercher, E., González-Alfaro, V., Llopis, F.J., Orchillés, A.V., Miguel, P.J., Martínez-Andreu, A.: Thermophysical properties of mixtures of 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate ionic liquid with alcohols at several temperatures. J. Chem. Thermodyn. 118, 292–301 (2018)

    Article  CAS  Google Scholar 

  2. Wasserscheid, P., Keim, W.: Ionic liquids—new “solutions” for transition metal catalysis. Angew Chem. Int. Edit 39, 3772–3789 (2000)

    Article  CAS  Google Scholar 

  3. Dupont, J., de Souza, R.F., Suarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  PubMed  Google Scholar 

  4. Matsumoto, K., Hwang, J., Kaushik, S., Chen, C.Y., Hagiwara, R.: Advances in sodium secondary batteries utilizing ionic liquid electrolytes. Energy Environ. Sci. 12, 3247 (2019)

    Article  CAS  Google Scholar 

  5. Francis, C.F.J., Kyratzis, I.L., Best, A.S.: Lithium-ion battery separators for ionic-liquid electrolytes: a review. Adv. Mater. 32, 1904205 (2020)

    Article  CAS  Google Scholar 

  6. Rakov, D.A., Chen, F.F., Ferdousi, S.A., Li, H., Pathirana, T., Simonov, A.N., Howlett, P.C., Atkin, R., Forsyth, M.: Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nat. Mater. 19, 1096–1101 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Molinari, N., Mailoa, J.P., Kozinsky, B.: General trend of a negative Li effective charge in ionic liquid electrolytes. J. Phys. Chem. Lett. 10, 2313–2319 (2019)

    Article  CAS  PubMed  Google Scholar 

  8. Wu, F., Zhu, N., Bai, Y., Gao, Y., Wu, C.L.: An interface-reconstruction effect for rechargeable aluminum battery in ionic liquid electrolyte to enhance cycling performances. Green. Energy Environ. 3, 71–77 (2018)

    Article  Google Scholar 

  9. Sampaio, A.M., Siqueira, L.J.A.: Ether-functionalized sulfonium ionic liquid and its mixture mixtures with acetonitrile as electrolyte for electrochemical double layer capacitors: a molecular dynamics study. J. Phys. Chem. B 124, 6679–6689 (2020)

    Article  CAS  PubMed  Google Scholar 

  10. Heydarian, S., Almasi, M., Saadati, Z.: Thermophysical study of mixture mixtures of 1-butyl-3-methylimidazolium nitrate ionic liquid + alcohols at different temperatures. J. Chem. Thermodyn. 135, 345–351 (2019)

    Article  CAS  Google Scholar 

  11. Zec, N., Bešter-Rogač, M., Marolt, G., Vraneš, M., Gadžurić, S.: Electrical and electrochemical behavior of [bmim][DCA]+γ-butyrolactone electrolyte. J. Chem. Thermodyn. 101, 293–299 (2016)

    Article  CAS  Google Scholar 

  12. Lu, X.X., Xie, H.J., Lei, Q.F., Fang, W.J.: Densities and viscosities of mixture mixtures of 2, 2-diethyl-1, 1, 3, 3-tetramethylguanidinium bis(trifluoromethylsulfonyl)imide with methanol and ethanol. J. Chem. Thermodyn. 136, 44–53 (2019)

    Article  CAS  Google Scholar 

  13. Shekaari, H., Zafarani-Moattar, M.T., Golmohammadi, B.: Thermodynamic and transport properties of ionic liquids, 1-alkyl-3-methylimidazolium thiocyanate in the aqueous lithium halides solutions. J. Chem. Thermodyn. 141, 105953 (2020)

    Article  CAS  Google Scholar 

  14. Rout, A., Binnemans, K.: Efficient separation of transition metals from rare earths by an undiluted phosphonium thiocyanate ionic liquid. Phys. Chem. Chem. Phys. 18, 16039–16045 (2016)

    Article  CAS  PubMed  Google Scholar 

  15. Nguelo, B.B., Dedzo, G.K., Tonle, I.K., Detellier, C., Ngameni, E.: Sensitive amperometric determination of thiocyanates at ionic liquid nanohybrid kaolinite modified glassy carbon electrode. Electroanal. 30, 543–550 (2018)

    Article  CAS  Google Scholar 

  16. Banda, R., Forte, F., Onghena, B., Binnemans, K.: Yttrium and europium separation by solvent extraction with undiluted thiocyanate ionic liquids. RSC Adv. 9, 4876–4883 (2019)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Coldur, M., Oguzlar, S., Ongun, M.Z., Oter, O., Yildirim, S.: Usage of thiocyanate-based ionic liquid as new optical sensor reagent: Absorption and emission based selective determination of Fe (III) ions. Spectrochim Acta A 224, 117385 (2020)

    Article  CAS  Google Scholar 

  18. Rahmani, F., Scovazzo, P., Pasquinelli, M.A., Nouranian, S.: Effects of ionic liquid nanoconfinement on the CO2/CH4 Separation in poly(vinylidene fluoride) /1-ethyl-3-methylimidazolium thiocyanate membranes. ACS Appl. Mater. Interfaces 13, 44460–44469 (2021)

    Article  CAS  PubMed  Google Scholar 

  19. Brandt, A., Ramirez-Castro, C., Anouti, M., Balducci, A.: An investigation about the use of mixtures of sulfonium-based ionic liquids and propylene carbonate as electrolytes for supercapacitors. J. Mater. Chem. A 1, 12669–12678 (2013)

    Article  CAS  Google Scholar 

  20. Zhang, Q.G., Liu, D.Y., Li, Q., Zhang, X.Y., Wei, Y., Lang, X.S.: Thermodynamic properties, excess properties, and molecular interactions of ionic liquids 1-cyanopropyl-3-methyl-imidazolium bis(fluorosulfonyl)imide/trifluoromethanesulfonate and mixturess containing acetonitrile. J. Mol. Liq 268, 770–780 (2018)

    Article  CAS  Google Scholar 

  21. Wei, Y., Zhang, W.B., Zhang, X.Y., Yang, H.G., Zhang, Q.G.: The volumetric and transport properties of 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ionic liquid and propylene carbonate mixtures. J Solut. Chem 48, 125–141 (2019)

    Article  CAS  Google Scholar 

  22. Bazyleva, A., Abildskov, J., Anderko, A., Baudouin, O., Chernyak, Y., de Hemptinne, J.-C., Diky, ladimir, Dohrn, V., Elliott, R., Jacquemin, J.R., Jaubert, J., Joback, J.-N., Kattner, K.G., Kontogeorgis, U.R., Loria, G.M., Mathias, H., O’Connell, P.M., Schröer, J.P., Smith, W., Soto, G.J., Wang, A., Weir, S., R.D.: Good reporting practice for thermophysical and thermochemical property measurements (IUPAC Technical Report). Pure Appl Chem., 93, 253–272: (2021)

  23. Zhang, Q.G., Li, M.C., Zhang, X.Y., Wu, X.Y.: The thermodynamic estimation and viscosity, electrical conductivity characteristics of 1-alkyl-3-methylimidazolium thiocyanate ionic liquids. Z. Phys. Chem. 228, 851–867 (2014)

    Article  CAS  Google Scholar 

  24. Freire, M.G., Teles, A.R.R., Rocha, M.A.A., Schröder, B., Neves, C.M.S.S., Carvalho, P.J., Evtuguin, D.V., Santos, L.M.N.B.F., Coutinho, J.A.P.: Thermophysical characterization of ionic liquids able to dissolve biomass. J. Chem. Eng. Data 56, 4813–4822 (2011)

    Article  CAS  Google Scholar 

  25. Lladosa, E., Loras, S., Poy, H., Caballero, L.: Thermophysical properties of mixtures of 1-ethyl-3-methylimidazolium methylsulfate or 1-ethyl-3-methylimidazolium thiocyanate with alcohols. J. Chem. Eng. Data 66, 968–978 (2021)

    Article  CAS  Google Scholar 

  26. Larriba, M., Navarro, P., García, J., Rodríguez, F.: Selective extraction of toluene from n-heptane using [emim][SCN] and [bmim][SCN] ionic liquids as solvents. J. Chem. Thermodyn. 79, 266–271 (2014)

    Article  CAS  Google Scholar 

  27. Liu, Q.S., Ma, L.S., Wang, S.Y., Ni, Z.Y., Fu, X.Y., Wang, J., Zheng, Q.: Study on the properties of density, viscosity, excess molar volume, and viscosity deviation of [C2mim][NTf2], [C2mmim][NTf2], [C4mim][NTf2], and [C4mmim][NTf2] with PC mixture mixtures. J. Mol. Liq 325, 114573 (2021)

    Article  CAS  Google Scholar 

  28. Pires, J., Timperman, L., Jacquemin, J., Balducci, A., Anouti, M.: Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate–based protic ionic liquid + propylene carbonate) binary mixture. J. Chem. Thermodyn. 59, 10–19 (2013)

    Article  CAS  Google Scholar 

  29. Turbomole, a Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH v6.6 2014; TURBOMOLE GmbH: 2007; available from http://www.turbomole.com. Order date: 10-11-2014 (permanent licence)

  30. Jacquemin, J., Feder-Kubis, J., Zorębski, M., Grzybowska, K., Chorążewski, M., Hensel-Bielówka, S., Zorębski, E., Paluch, M., Dzida, M.: Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media COSMO-RS structure characterization and modeling of heat capacities. Phys. Chem. Chem. Phys. 16, 3549–3557 (2014)

    Article  CAS  PubMed  Google Scholar 

  31. Nockemann, P., Thijs, B., Pittois, S., Thoen, J., Glorieux, C., Hecke, K.V., Meervelt, L.V., Kirchner, B., Binnemans, K.: Task specific ionic liquid for solubilizing metal oxides. J. Phys. Chem. B 110, 20978–20992 (2006)

    Article  CAS  PubMed  Google Scholar 

  32. Yambou, E.P., Gorska, B., Béguin, F.: Mixtures of ionic liquids based on Emim cation and fluorinated anions: physico-chemical characterization in view of their application as low-temperature electrolytes. J. Mol. Liq 298, 111959 (2020)

    Article  CAS  Google Scholar 

  33. Yang, F.X., Feng, P., Chen, Q., Wang, X.P., Tan, H.Z.: Influences of organic solvents on the properties of 1-butyl-3-methylimidazolium acetate. J. Chem. Eng. Data 65, 1911–1918 (2020)

    Article  CAS  Google Scholar 

  34. Sun, H., Zhu, G.Z., Xu, X.T., Liao, M., Li, Y.Y., Angell, M., Gu, M., Zhu, Y.M., Hung, W.H., Li, J.C., Kuang, Y., Meng, Y.T., Lin, M.C., Peng, H.S., Dai, H.: J.:A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nat. Commun. 10, 1–11 (2019)

    Article  CAS  Google Scholar 

  35. Wong, S.I., Lin, H., Sunarso, J., Wong, B.T., Jia, B.: Optimization of ionic-liquid based electrolyte concentration for high-energy density graphene supercapacitors. Appl. Mater. Today 18, 100522 (2020)

    Article  Google Scholar 

  36. Liu, Q.S., Zhao, L.W., Zheng, Q.G., Mou, L., Zhang, P.F.: Excess molar volume and viscosity deviation of [C2mim][NTf2]/[C4mim][NTf2] + DMC/DEC. J. Chem. Eng. Data 63, 4484–4496 (2018)

    Article  CAS  Google Scholar 

  37. Rodríguez, H., Brennecke, J.F.: Temperature and composition dependence of the density and viscosity of mixture mixtures of water + ionic liquid. J. Chem. Eng. Data 51, 2145–2155 (2006)

    Article  CAS  Google Scholar 

  38. Bailey, H.E., Wang, Y.L., Fayer, M.D.: Impact of hydrogen bonding on the dynamics and structure of protic ionic liquid/water mixtures. J. Phys. Chem. B 121, 8564–8576 (2017)

    Article  CAS  PubMed  Google Scholar 

  39. Yang, F.X., Wang, X.P., Tan, H.Z., Liu, Z.G.: Improvement the viscosity of imidazolium-based ionic liquid using organic solvents for biofuels. J. Mol. Liq 248, 626–633 (2017)

    Article  CAS  Google Scholar 

  40. Haghtalab, A., Shojaeian, A.: Volumetric and viscometric behaviour of the mixturess of n-methyldiethanolamine and diethanolamine with 1-butyl-3-methylimidazolium acetate at various temperatures. J. Chem. Thermodyn. 68, 128–137 (2014)

    Article  CAS  Google Scholar 

  41. Azarang, N., Movagharnejad, K., Pirdashti, M., Ketabi, M.: Densities, viscosities, and refractive indices of poly(ethylene glycol) 300 + 1,2-ethanediol, 1,2-propanediol, 1,3-propanediol, 1,3-butanediol, or 1,4-butanediol mixture liquid mixtures. J. Chem. Eng. Data 65, 3448–3462 (2020)

    Article  CAS  Google Scholar 

  42. Yaghini, N., Abdurrokhman, I., Hasani, M., Martinelli, A.: Transport properties and intermolecular interactions in mixtures based on the protic ionic liquid ethylimidazolium triflate and ethylene glycol. Phys. Chem. Chem. Phys. 20, 22980–22986 (2018)

    Article  CAS  PubMed  Google Scholar 

  43. Zheng, Y., Zheng, Y.J., Wang, Q., Wang, Z.: Density, viscosity, and electrical conductivity of 1-alkyl-3-methylimidazolium dicyanamide ionic liquids. J. Chem. Eng. Data 66, 480–493 (2021)

    Article  CAS  Google Scholar 

  44. Papović, S., Vraneš, M., Tot, A., Szilágyi, I., Katana, B., Alenezi, K., Gadžurić, S.: Physicochemical investigations of a mixtures containing ionic liquid 1-butyl-1-methylpyrrolidinium bis (trifluoromethylsulfonyl) imide and diethyl carbonate. J. Chem. Eng. Data 65, 68–80 (2020)

    Article  CAS  Google Scholar 

  45. Fu, Y.L., Cui, X.B., Zhang, Y., Feng, T.Y., He, J., Zhang, X.M., Bai, X., Cheng, Q.L.: Measurement and correlation of the electrical conductivity of the ionic liquid [BMIM][TFSI] in mixture organic solvents. J. Chem. Eng. Data 63, 1180–1189 (2018)

    Article  CAS  Google Scholar 

  46. Zhou, Y., Gong, S.D., Xu, X.Z., Yu, Z.W., Kiefer, J., Wang, Z.H.: The interactions between polar solvents (methanol, acetonitrile, dimethylsulfoxide) and the ionic liquid 1-ethyl-3-methylimidazolium bis(flfluorosulfonyl)imide. J. Mol. Liq 299, 112159 (2020)

    Article  CAS  Google Scholar 

  47. Zheng, Y.Z., Chen, H., Zhou, Y., Deng, G., He, H.Y., Wu, L.M.: The structure and hydrogen-bond properties of N-alkyl-N-methyl-pyrrolidinium bis(trifluoromethylsulfonyl) imide and DMSO mixtures. Phys. Chem. Chem. Phys. 22, 28021 (2020)

    Article  CAS  PubMed  Google Scholar 

  48. Zhou, Y., Xu, X.Z., Wang, Z.H., Gong, S.D., Chen, H., Yu, Z.W., Kiefer, J.: The effect of introducing an ether group into an imidazolium-based ionic liquid in mixtures with DMSO. Phys. Chem. Chem. Phys. 22, 15734 (2020)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhenjiang Science and Technology Innovation Fund (GY2019022) and Jiangsu Universities Blue Project 2019 (Outstanding Young Teacher), the Project of Science and Technology Department of Liaoning Province of China (2019-ZD-0509), the Project of Education Department of Liaoning Province of China (LJKZ1010, LQ2019004), the Key Research and Development Plan of Liaoning Science and Technology Department [2020JH2/10200007].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zheng Xing or Qingguo Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary Material 1

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Xing, Z., Zhang, X. et al. Thermodynamic, excess Properties and Intermolecular interactions of ionic liquid 1- Ethyl-3-Methylimidazolium thiocyanate and propylene carbonate mixtures. J Solution Chem 51, 594–608 (2022). https://doi.org/10.1007/s10953-022-01154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01154-2

Keywords

Navigation