Skip to main content

Advertisement

Log in

Physicochemical Characteristics of Dibromobenzimidazole Derivatives

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

At the initial stage of the design of a medicinal substance the physicochemical characteristics of the active pharmaceutical ingredient is essential. Preformulation of the active substances aims to minimize the problems associated with obtaining the proper formulation in subsequent stages of drug development, reduction the costs of drug research and optimization the time for the transition from active substance to drug form and reaching to the market. This paper contains the pathway of synthesis of selected dibromobenzimidazole derivatives and their physicochemical characteristics. The selected group contained three dibromobenzimidazole derivatives differing in type, size, and polarity of substituents in N-1 and C-2 positions of the benzimidazole core. The examined substances were: (5,6-dibromo-1H-benzimidazol-1-yl)acetonitrile (DB1), 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(4-fluorophenyl)ethanone (DB2), [5,6-dibromo-2-(trifluoromethyl)-1H-benzimidazol-1-yl]acetonitrile (DB3). The physicochemical characteristics consist of thermal analyses, solubilities, and ionization constants. Thermal analyses were performed using differential scanning calorimetry. Solubilities of the substances were determined in water, ethanol, and 1-octanol at atmospheric pressure. The experimental results were correlated with thermodynamic models based on local concentration theory. The spectrophotometric method was used to determine ionization constants at temperatures 298.2 K and 310.2 K.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

D :

Absorbance value

ΔfusH:

Molar enthalpy of fusion (kJ·mol−1)

p :

Pressure

p(aHγCl):

Acidity function

pK a :

Acidity function

T :

Equilibrium temperature (K)

T :

Estimated error of temperature (K)

x :

Mole fraction

\({V}_{m}^{{298} K}\) :

Molar volume at the temperature 293.2 K

γ :

Activity coefficient

\({\sigma }_{T}\) :

Root-mean-square deviation in temperature

A:

Base value

cal:

Calculated value

exp:

Experimental value

HA:

Acid value

fus:

Fusion

lit:

Literature data

T :

Temperature

References

  1. Bansal, Y., Kaur, M., Bansal, G.: Antimicrobial potential of benzimidazole derived molecules. Mini-Rev. Med. Chem. 19(8), 624–646 (2019)

    Article  CAS  Google Scholar 

  2. Tahlan, S., Kumar, S., Kakkar, S., Narasimhan, B.: Benzimidazole scaffolds as promising antiproliferative agents: a review. BMC Chemistry 13(1), 66–82 (2019)

    Article  Google Scholar 

  3. Tahlan, S., Kumar, S., Narasimhan, B.: Antimicrobial potential of 1H-benzo[d]imidazole scafold: a review. BMC Chemistry 13(1), 18–45 (2019)

    Article  Google Scholar 

  4. Keri, R.S., Hiremathad, A., Budagumpi, S., Nagaraja, B.M.: Comprehensive review in current developments of benzimidazole-based medicinal chemistry. Chem. Biol. Drug Des. 86, 799–845 (2015)

    CAS  Google Scholar 

  5. Bansal, Y., Silakari, O.: The therapeutic journey of benzimidazoles: a review. Bioorg. Med. Chem. 20, 6208–6236 (2012)

    Article  CAS  Google Scholar 

  6. https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/020666s005s006lbl.pdf

  7. https://www.accessdata.fda.gov/drugsatfda_docs/label/2016/208398s000lbl.pdf

  8. https://www.accessdata.fda.gov/drugsatfda_docs/label/2003/16096slr033,16097slr026_mintezol_lbl.pdf

  9. Hou, Z.J., Luo, X., Zhang, W., Peng, F., Cui, B., Wu, S.J., Zheng, F.M., Xu, J., Xu, L.Z., Long, Z.J., Wang, X.T., Li, G.H., Wan, X.Y., Yang, Y.L., Liu, Q.: Flubendazole, FDA-approved anthelmintic, targets breast cancer stem-like cells. Oncotarget 6(8), 6326–6340 (2015)

    Article  Google Scholar 

  10. Janeczko, M., Orzeszko, A., Kazimierczuk, Z., Szyszka, R., Baier, A.: CK2α and CK2α′ subunits differ in their sensitivity to 4,5,6,7-tetrabromo- and 4,5,6,7-tetraiodo-1H-benzimidazole derivatives. Eur. J. Med. Chem. 47, 345–350 (2012)

    Article  CAS  Google Scholar 

  11. Najda-Bernatowicz, A., Łebska, M., Orzeszko, A., Kopańska, K., Krzywińska, E., Muszyńska, G., Bretner, M.: Synthesis of new analogs of benzotriazole, benzimidazole and phthalimide-potential inhibitors of human protein kinase CK2. Bioorg. Med. Chem. 17(4), 1573–1578 (2009)

    Article  CAS  Google Scholar 

  12. Andrzejewska, M., Pagano, M.A., Meggio, F., Brunati, A.M., Kazimierczuka, Z.: Polyhalogenobenzimidazoles: synthesis and their inhibitory activity against casein kinases. Bioorg. Med. Chem. 11, 3997–4002 (2003)

    Article  CAS  Google Scholar 

  13. El Rashedy, A.A., Aboul-Enein, H.Y.: Benzimidazole derivatives as potential chemotherapeutic agents. Curr. Drug Ther. 8, 1–14 (2013)

    Article  Google Scholar 

  14. Donglu, Z., Surapaneni, S.: ADME-enabling technologies in drug design and development. Wiley, Hoboken (2012)

    Google Scholar 

  15. Weygand, F., Wacker, A., Wirth, F.: Beziehungen zwischen vitamin B12, purinen und pyrimidinen bei lactobacillus leichmannii 313. Z. Naturforsch. 6, 25–34 (1951)

    Article  Google Scholar 

  16. Bai, R., Wei, Z., Liu, J., Xie, W., Yao, H., Wu, X., Jiang, J., Wang, Q., Xu, J.: Synthesis and biological evaluation of 4’-[(benzimidazole-1-yl)methyl]biphenyl2-sulfonamide derivatives as dual angiotensin-II/endothelin-a receptor antagonists. Bioorg. Med. Chem. 20, 4661–4667 (2012)

    Article  CAS  Google Scholar 

  17. Juan, L., Zhenzhen, W.: Patent, Preparation Method of 5, 6-bis-(4-aminobenzyl)-2-trifluoromethyl-1H-benzimidazole¸ People’s Republic of China CN111116485 (2020)

  18. René, O., Souverneva, A., Magnuson, S.R., Fauber, B.P.: Efficient syntheses of 2-fluoroalkylbenzimidazoles and –benzothiazoles. Tetrahedron Lett. 54, 201–204 (2013)

    Article  Google Scholar 

  19. Phillips, M.A.: The formation of 2-substituted benzimidazoles. J. Chem. Soc. CCCXVII, 2393–2399 (1928)

    Article  Google Scholar 

  20. Moerkved, E.H., Neset, S.M., Bjoerlo, O., Kjoesen, H.: Preparations and template cyclotetramerizations of 2,1,3-Benzothia(selena)diazole-5,6-dicarbonitriles. Acta Chem. Scand. 49, 658–662 (1995)

    Article  CAS  Google Scholar 

  21. Shao, J., Chang, J., Chi, C.: Linear and star-shaped pyrazine-containing acene dicarboximides with high electron-affinity. Org. Biomol. Chem. 10, 7045–7052 (2012)

    Article  CAS  Google Scholar 

  22. Barton, A.F.M.: CRC Handbook of Solubility Parameters. CRC Press, Boca Raton (1985)

    Google Scholar 

  23. Alasmary, F.A.S., Snelling, A.M., Zain, M.E., Alafeefy, A.M., Awaad, A.S., Karodia, N.: Synthesis and evaluation of selected benzimidazole derivatives as potential antimicrobial agents. Molecules 20, 15206–15223 (2015)

    Article  CAS  Google Scholar 

  24. Qiang, L., Yu-Xiu, L., Hong-Jian, S., Qing-Min, W.: Electron transfer photoredox catalysis: development of a photoactivated reductive desulfonylation of an aza-heteroaromatic ring. ASC 362, 3110–3115 (2020)

    Google Scholar 

  25. Xiao, L., Junhua, Y., You, Y., Hailong, H., Limin, H., Ning, Z.: Reductive cyclization of o-phenylenediamine with CO2 and BH3NH3 to synthesize 1H-benzoimidazole derivatives. J. Org. Chem. 954–955, 122079 (2021)

    Google Scholar 

  26. Mei, F., Xiaochen, J., Yongtong, L., Guo-Jun, D., Huawen, H.: Visible-light-induced aerobic oxidative desulfurization of 2-mercaptobenzimidazoles via a sulfinyl radical. Green Chem. 22(17), 5594–5598 (2020)

    Article  Google Scholar 

  27. Max-Planck-Gesellschaft zur Förderung der Wissenschaften: Zeitschrift für Naturforschung. B, Chemie, Biochemie, Biophysik und verwandte Gebiete. Tübingen, Verlag der Zeitschrift für Naturforschung (1961–1962)

  28. Yanmej, Z., Guanshuo, S., Yuebo, S., Haifeng, Z.: Fe(OTf)3-catalyzed practical synthesis of 2-trifluoromethylarylimidazoles from o-arylenediamines and hexafluoroacetylacetone. Tet. Lett. 57(30), 3396–3399 (2016)

    Article  Google Scholar 

  29. Hernández-Covarrubias, C., Vilchis-Reyes, M., Yépez-Mulia, L., Sánchez-Díaz, R., Navarrete-Vázquez, G., Hernandez-Campos, A., Castillo, R., Hernández-Luis, F.: Exploring the interplay of physicochemical properties, membrane permeability and giardicidal activity of some benzimidazole derivatives. Eur. J. Med. Chem. 52, 193–204 (2012)

    Article  Google Scholar 

  30. Pearlman, R.S.: Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 13, 555–562 (1984)

    Article  CAS  Google Scholar 

  31. Budavari, S.: The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals. Merck, Whitehouse Station (1996)

    Google Scholar 

  32. https://www.drugbank.ca/drugs/DB02962

  33. Kortum, G., Vogel, W., Andrussow, K.: International union of pure and applied chemistry. In: Commission on Electrochemical Data: Dissociation Constants of Organic Acids in Aqueous Solution. Butterworths, London (1961)

    Google Scholar 

Download references

Acknowledgements

Funding for this research was provided by the Warsaw University of Technology, Warsaw, Poland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aneta Pobudkowska.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Śliwińska, A., Pobudkowska, A. & Kowalkowska, A. Physicochemical Characteristics of Dibromobenzimidazole Derivatives. J Solution Chem 51, 556–576 (2022). https://doi.org/10.1007/s10953-022-01153-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01153-3

Keywords

Navigation