Skip to main content
Log in

Solvent Extraction of Nickel and Zinc from Nitric Acid Solution Using D2EHPA: Experimental and Modeling

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The present communication investigates the reaction mechanism of extraction of Zn(II) and Ni(II) and thermodynamic modeling using di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an organic extractant that is diluted in kerosene at T = 25 °C and the organic: aqueous phase ratio of 1:1 and pH range 2–6. The effect of two important parameters i.e. concentration of extractant and pH on the extraction of metals were investigated. The experimental tests allowed us to define the best process conditions, among various investigated conditions, to extract Ni(II) and Zn(II) from filter cake. The optimized extraction values of Ni(II) and Zn(II) were 95.5 and 95.1%, respectively and these were obtained within one stage by 25% (v/v) concentration of D2EHPA, 60 min of contact time and rotation speed of 600 rpm. Moreover, the extraction reaction stoichiometry of Ni(II) and Zn(II) was determined using the slope analysis. Also, the activity coefficient of all ions in the aqueous phase and all of the organic components in the organic phase were predicted based on Electrolyte- universal quasichemical-NRF and universal quasichemical-NRF model. The obtained results indicated well agreement with the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A ϕ :

Debye–Hückel constant

\(C_{\text{aq}}^{0}\) :

Concentration of the metal species in the aqueous phases

\({C}_{\text{aq}}^{f}\) :

Concentration of the metal species in the organic phases

\(D\) :

Distribution ratio

I x :

Ionic strength on amole fraction basis

\(K_{{{\text{ex}}}}\) :

Equilibrium constant

M S :

Solvent molecular weight

q i :

Surface parameters

r i :

Volume parameters

u ij :

Interaction energies

x i :

Component mole fraction

X :

Effective mole fraction

Z :

Ion charge number

Z :

Coordination number

α ij :

Adjustable parameters

\(\gamma_{i}\) :

Activity coefficient

\(\gamma_{i}^{*}\) :

Unsymmetrical normalization

λ ij :

Adjustable parameters

λ c ,a :

Adjustable model parameters

λ ion, m :

Adjustable model parameters

τ ij, τ ji :

Interaction parameters between i, j substance

\(\tau\) :

Ion–ion and ion–molecule

Γ ij :

Nonrandom factor

ϕ i :

Volume fraction

θ i :

Area fraction

1:

Solute component

2:

Solvent component

C :

Critical

A :

Anion molecules

C :

Cation molecules

M :

Solvent

Calc:

Calculated

Exp:

Experimental data

Aq:

Aqueous phase

Org:

Organic phase

References

  1. Sethurajan, M., Huguenot, D., Jain, R., Lens, P.N., Horn, H.A., Figueiredo, L.H., van Hullebusch, E.D.: Leaching and selective zinc recovery from acidic leachates of zinc metallurgical leach residues. J. Hazard. Mater. 15(324), 71–82 (2017)

    Article  Google Scholar 

  2. Daryabor, M., Ahmadi, A., Zilouei, H.: Solvent extraction of cadmium and zinc from sulphate solutions: comparison of mechanical agitation and ultrasonic irradiation. Ultrason. Sonochem. 1(34), 931–937 (2017)

    Article  Google Scholar 

  3. Bagheri, H., Ghader, S., Hatami, N.: Solubility of ibuprofen in conventional solvents and supercritical CO2: evaluation of ideal and non-ideal models. Chem. Chem. Technol. 28(1), 1 (2019)

    Article  Google Scholar 

  4. Behnajady, B., Moghaddam, J.: Selective leaching of zinc from hazardous As-bearing zinc plant purification filter cake. Chem. Eng. Res. Des. 1(117), 564–574 (2017)

    Article  Google Scholar 

  5. Sobianowska-Turek, A.: Hydrometallurgical recovery of metals: Ce, La Co, Fe, Mn, Ni and Zn from the stream of used Ni-MH cells. Waste Manage. 1(77), 213–219 (2018)

    Article  Google Scholar 

  6. Bagheri, H., Hashemipour, H., Mirzaie, M.: Investigation on hydrodynamic and formation of nano particle by RESS process: the numerical study. J. Mol. Liq. 1(281), 490–505 (2019)

    Article  Google Scholar 

  7. Fernandes, A., Afonso, J.C., Dutra, A.J.: Hydrometallurgical route to recover nickel, cobalt and cadmium from spent Ni–Cd batteries. J. Power Sources. 15(220), 286–291 (2012)

    Article  Google Scholar 

  8. Bagheri, H., Ghader, S.: Correlating ionic liquids density over wide range of temperature and pressure by volume shift concept. J. Mol. Liq. 1(236), 172–183 (2017)

    Article  Google Scholar 

  9. Janiszewska, M., Markiewicz, A., Regel-Rosocka, M.: Hydrometallurgical separation of Co (II) from Ni(II) from model and real waste solutions. J. Clean Prod. 10(228), 746–754 (2019)

    Article  Google Scholar 

  10. Liu, F., Ning, P.G., Cao, H.B., Zhang, Y.: Measurement and modeling for vanadium extraction from the (NaVO3+H2SO4+H2O) system by primary amine N1923. J. Chem. Thermodyn. 1(80), 13–21 (2015)

    Article  Google Scholar 

  11. Mohammadzadeh, M., Bagheri, H., Ghader, S.: Study on extraction and separation of Ni and Zn using [bmim][PF6] IL as selective extractant from nitric acid solution obtained from zinc plant residue leaching. Arab. J. Chem. 13(6), 5821–5831 (2020)

    Article  CAS  Google Scholar 

  12. Bagheri, H., Mansoori, G.A., Hashemipour, H.: A novel approach to predict drugs solubility in supercritical solvents for RESS process using various cubic EoS-mixing rule. J. Mol. Liq. 1(261), 174–188 (2018)

    Article  Google Scholar 

  13. Iloeje, C.O., Jové Colón, C.F., Cresko, J., Graziano, D.J.: Gibbs energy minimization model for solvent extraction with application to rare-earths recovery. Environ. Sci. Technol. 53(13), 7736–7745 (2019)

    Article  CAS  PubMed  Google Scholar 

  14. Bagheri, H., Hashemipour, H., Ghader, S.: Population balance modeling: application in nanoparticle formation through rapid expansion of supercritical solution. Comput. Part. Mech. 6(4), 721–737 (2019)

    Article  Google Scholar 

  15. Teng, T., Yi-Gui, L., Liang-Ping, Z.: An investigation of the thermodynamics of solvent extraction of metals I. Calculation of the activity coefficients of non-electrolytes in the UO2Cl2-TBP system. Hydrometallurgy 8(3), 261–272 (1982)

    Article  CAS  Google Scholar 

  16. Bagheri, H., Mohebbi, A.: Prediction of critical temperature, critical pressure and acentric factor of some ionic liquids using Patel-Teja equation of state based on genetic algorithm. Korean J. Chem. Eng. 34(10), 2686–2702 (2017)

    Article  CAS  Google Scholar 

  17. Sheikhi-Kouhsar, M., Bagheri, H., Raeissi, S.: Modeling of ionic liquid+polar solvent mixture molar volumes using a generalized volume translation on the Peng-Robinson equation of state. Fluid Phase Equilib. 395, 51–57 (2015)

    Article  CAS  Google Scholar 

  18. Mörters, M., Bart, H.J.: Extraction equilibria of zinc with bis (2-ethylhexyl) phosphoric acid. J. Chem. Eng. Data 45(1), 82–85 (2000)

    Article  Google Scholar 

  19. Tanaka, M.: Modelling of solvent extraction equilibria of Cu(II) from nitric and hydrochloric acid solutions with (β-hydroxyoxime). Hydrometallurgy 24(3), 317–331 (1990)

    Article  CAS  Google Scholar 

  20. Lee, M.S., Ahn, J.G., Son, S.H.: Modeling of solvent extraction of zinc from sulphate solutions with D2EHPA. Mater. Trans. 42(12), 2548–2552 (2001)

    Article  CAS  Google Scholar 

  21. Tkac, P., Paulenova, A., Vandegrift, G.F., Krebs, J.F.: Modeling of Pu (IV) extraction from acidic nitrate media by tri-n-butyl phosphate. J. Chem. Eng. Data 54(7), 1967–1974 (2009)

    Article  CAS  Google Scholar 

  22. Juang, R.S., Su, J.Y.: Thermodynamic equilibria of the extraction of cobalt (II) from sulfate solutions with bis (2-ethylhexyl) phosphoric acid. Ind. Eng. Chem. Res. 31(10), 2395–2400 (1992)

    Article  CAS  Google Scholar 

  23. Samson, E., Lemaire, G., Marchand, J., Beaudoin, J.J.: Modeling chemical activity effects in strong ionic solutions. Comput. Mater. Sci. 15(3), 285–294 (1999)

    Article  CAS  Google Scholar 

  24. Haghtalab, A., Peyvandi, K.: Generalized electrolyte-UNIQUAC-NRF model for calculation of solubility and vapor pressure of multicomponent electrolytes solutions. J. Mol. Liq. 1(165), 101–112 (2012)

    Article  Google Scholar 

  25. Cruz, J.L., Renon, H.: A new thermodynamic representation of binary electrolyte solutions nonideality in the whole range of concentrations. AlChE J. 24(5), 817–830 (1978)

    Article  CAS  Google Scholar 

  26. Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: single solvent, single completely dissociated electrolyte systems. AlChE J. 28(4), 588–596 (1982)

    Article  CAS  Google Scholar 

  27. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AlChE J. 14(1), 135–144 (1968)

    Article  CAS  Google Scholar 

  28. Chen, C.C., Evans, L.B.: A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AlChE J. 32(3), 444–454 (1986)

    Article  CAS  Google Scholar 

  29. Haghtalab, A., Vera, J.H.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AlChE J. 34(5), 803–813 (1988)

    Article  CAS  Google Scholar 

  30. Shi, D., Cui, B., Li, L., Xu, M., Zhang, Y., Peng, X., Zhang, L., Song, F., Ji, L.: Removal of calcium and magnesium from lithium concentrated solution by solvent extraction method using D2EHPA. Desalination 479, 114306 (2020)

    Article  CAS  Google Scholar 

  31. Jafari, H., Abdollahi, H., Gharabaghi, M., Balesini, A.A.: Solvent extraction of zinc from synthetic Zn-Cd-Mn chloride solution using D2EHPA: Optimization and thermodynamic studies. Sep. Purif. Technol. 31(197), 210–219 (2018)

    Article  Google Scholar 

  32. Li, G., Guo, S., Hu, J.: The influence of clay minerals and surfactants on hydrocarbon removal during the washing of petroleum-contaminated soil. Chem. Eng. J. 15(286), 191–197 (2016)

    Google Scholar 

  33. Vahidi, E., Rashchi, F., Moradkhani, D.: Recovery of zinc from an industrial zinc leach residue by solvent extraction using D2EHPA. Miner. Eng. 22(2), 204–206 (2009)

    Article  CAS  Google Scholar 

  34. Alamdari, E.K., Moradkhani, D., Darvishi, D., Askari, M., Behnian, D.: Synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA. Miner. Eng. 17(1), 89–92 (2004)

    Article  Google Scholar 

  35. Innocenzi, V., Veglio, F.: Separation of manganese, zinc and nickel from leaching solution of nickel-metal hydride spent batteries by solvent extraction. Hydrometallurgy 1(129), 50–58 (2012)

    Article  Google Scholar 

  36. Babakhani, A., Rashchi, F., Zakeri, A., Vahidi, E.: Selective separation of nickel and cadmium from sulfate solutions of spent nickel-cadmium batteries using mixtures of D2EHPA and Cyanex 302. J. Power Sources. 1(247), 127–133 (2014)

    Article  Google Scholar 

  37. Pereira, D.D., Rocha, S.D., Mansur, M.B.: Recovery of zinc sulphate from industrial effluents by liquid-liquid extraction using D2EHPA (di-2-ethylhexyl phosphoric acid). Sep. Purif. Technol. 53(1), 89–96 (2007)

    Article  CAS  Google Scholar 

  38. Haghtalab, A., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281(2), 163–171 (2009)

    Article  CAS  Google Scholar 

  39. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102(9), 2902–2906 (1980)

    Article  CAS  Google Scholar 

  40. Mazloumi, S.H.: On the application of nonelectrolyte UNIQUAC-NRF model for strong aqueous electrolyte solutions. Fluid Phase Equilib. 15(417), 70–76 (2016)

    Article  Google Scholar 

  41. Haghtalab, A., Asadollahi, M.A.: An excess Gibbs energy model to study the phase behavior of aqueous two-phase systems of polyethylene glycol+ dextran. Fluid Phase Equilib. 171(1–2), 77–90 (2000)

    Article  CAS  Google Scholar 

  42. Prausnitz, J.M., Tavares, F.W.: Thermodynamics of fluid-phase equilibria for standard chemical engineering operations. AlChE J. 50(4), 739–761 (2004)

    Article  CAS  Google Scholar 

  43. Reynel-Ávila, H.E., Bonilla-Petriciolet, A., Tapia-Picazo, J.C.: An artificial neural network-based NRTL model for simulating liquid-liquid equilibria of systems present in biofuels production. Fluid Phase Equilib. 15(483), 153–164 (2019)

    Article  Google Scholar 

  44. Yu, S., Xu, X., Xing, W., Xue, F., Cheng, Y.: Solubility, thermodynamic parameters, and dissolution properties of gliclazide in seventeen pure solvents at temperatures from 278.15 to 318.15 K. J. Mol. Liq. 15(312), 113425 (2020)

    Article  Google Scholar 

  45. Ravichandran, A., Khare, R., Chen, C.C.: Predicting NRTL binary interaction parameters from molecular simulations. AlChE J. 64(7), 2758–2769 (2018)

    Article  CAS  Google Scholar 

  46. Anderson, T.F., Prausnitz, J.M.: Application of the UNIQUAC equation to calculation of multicomponent phase equilibria. 1. Vapor-liquid equilibria. Ind. Eng. Chem. Process. Des. Dev. 17(4), 552–561 (1978)

    Article  CAS  Google Scholar 

  47. Safarzadeh, M.S., Moradkhani, D., Ilkhchi, M.O., Golshan, N.H.: Determination of the optimum conditions for the leaching of Cd–Ni residues from electrolytic zinc plant using statistical design of experiments. Sep. Purif. Technol. 58(3), 367–376 (2008)

    Article  CAS  Google Scholar 

  48. Lasheen, T.A., El-Hazek, M.N., Helal, A.S., El-Nagar, W.: Recovery of manganese using molasses as reductant in nitric acid solution. Int. J. Miner. Met. Mater. 92(3–4), 109–114 (2009)

    CAS  Google Scholar 

  49. Sheik, A.R., Ghosh, M.K., Sanjay, K., Subbaiah, T., Mishra, B.K.: Dissolution kinetics of nickel from spent catalyst in nitric acid medium. J. Taiwan Inst. Chem. Eng. 44(1), 34–39 (2013)

    Article  CAS  Google Scholar 

  50. Oza, R., Shah, N., Patel, S.: Recovery of nickel from spent catalysts using ultrasonication-assisted leaching. J. Chem. Technol. Biotechnol. 86(10), 1276–1281 (2011)

    Article  CAS  Google Scholar 

  51. MacCarthy, J., Nosrati, A., Skinner, W., Addai-Mensah, J.: Atmospheric acid leaching mechanisms and kinetics and rheological studies of a low grade saprolitic nickel laterite ore. Hydrometallurgy 1(160), 26–37 (2016)

    Article  Google Scholar 

  52. Balesini-Aghdam, A.A., Yoozbashizadeh, H., Moghaddam, J.: Direct hydrometallurgical separation of Zn(II) from brine leaching solution of zinc filter cake by simple solvent extraction process. Physicochem. Probl. Miner. Process. 55(3), 667–678 (2019)

    CAS  Google Scholar 

  53. Darvishi, D., Haghshenas, D.F., Alamdari, E.K., Sadrnezhaad, S.K., Halali, M.: Synergistic effect of cyanex 272 and cyanex 302 on separation of cobalt and nickel by D2EHPA. Hydrometallurgy 77(3–4), 227–238 (2005)

    Article  CAS  Google Scholar 

  54. Wei, W., Cho, C.W., Kim, S., Song, M.H., Bediako, J.K., Yun, Y.S.: Selective recovery of Au (III), Pt (IV), and Pd (II) from aqueous solutions by liquid-liquid extraction using ionic liquid Aliquat-336. J. Mol. Liq. 1(216), 18–24 (2016)

    Article  Google Scholar 

  55. Ahmadi, H., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model based on ion specific parameters for the correlation of mean activity coefficients of electrolyte solutions. J. Solution Chem. 46, 1202–1219 (2017)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sattar Ghader.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadzadeh, M., Bagheri, H. & Ghader, S. Solvent Extraction of Nickel and Zinc from Nitric Acid Solution Using D2EHPA: Experimental and Modeling. J Solution Chem 51, 424–447 (2022). https://doi.org/10.1007/s10953-022-01151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01151-5

Keywords

Navigation