Skip to main content
Log in

Effect of a Biosurfactant on Micellar Behavior of Cationic Surfactants in Aqueous Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Herein, the mixed micellization behavior between bile salt (sodium cholate, SCH) and two cationic surfactants (tetradecyltrimethylammonium bromide, TTAB and cetyltrimethylammonium bromide, CTAB) has been investigated in aqueous solution by UV–Vis spectrophotometric and conductometric methods at 298.15 K. The critical micelle concentration (CMC) of SCH-surfactant mixtures was measured by using the tautomers of 1-phenyl-1, 3-butadione (or benzoylacetone, BZA). The CMC values of the mixtures at various mole fractions (yi) were lower than the pure surfactants (due to the strong electrostatic attraction between anionic and cationic components after mixing). Regular solution theory (RST) was used to estimate the synergistic (or non-ideal behavior) of the mixed micelles. Different parameters of micellization such as the micellar compositions (\(X_{1}^{m}\) and \(X_{2}^{m}\)), interaction parameter (\(\beta^{m}\)) and the activity coefficients of components in the mixed micelle (\(f_{1}^{m}\) and \(f_{2}^{m}\)) along with thermodynamic parameters are calculated and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Yong-Cun, Y., Shao-Ming, C., Hao, S., Yong, Z., Rong, H., Hong-You, Z., Yan, Z., Haustein, M., Schiller, P., Wahab, M., Mogel, H.J.: Computer simulations of the formation of bile salt micelles and bile salt/DPPC mixed micelles in aqueous solutions. J. Solution Chem. 43, 1755–1770 (2014)

    Article  CAS  Google Scholar 

  2. Nair, P.P., Kritchevsky, D.: The Bile acids Chemistry, Physiology and Metabolism, vol. 1. Plenum Press, New York (1971)

    Book  Google Scholar 

  3. Fini, A., Roda, A., Fugazza, R., Grigolo, B.: Chemical properties of bile acids: III. Bile acid structure and solubility in water. J. Solution Chem. 14, 595–603 (1985)

    Article  CAS  Google Scholar 

  4. Singh, A., Hamme, D.J.V., Ward, O.P.: Surfactants in microbiology and biotechnology: part 2. Application aspects. Biotechnol. Adv. 25, 99–121 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Azum, N., Rub, M.A., Asiri, A.M.: Bile salt–bile salt interaction in mixed monolayer and mixed micelle formation. J. Chem. Thermodyn. 128, 406–414 (2019)

    Article  CAS  Google Scholar 

  6. Azum, N., Rub, M.A., Asiri, A.M.: Aggregation behavior of antipsychotic drug under the influence of bile salt in aqueous/urea solution. J. Oleo Sci. 69, 327–335 (2020)

    Article  CAS  PubMed  Google Scholar 

  7. Garidel, P., Hildebrand, A., Knauf, K., Blume, A.: Membranolytic activity of bile salts: influence of biological membrane properties and composition. Molecules 10, 2292–2326 (2007)

    Article  Google Scholar 

  8. Hofmann, A.F., Northfield, T., Zentler-Munro, P.L., Jazrawi, R.P.: In Bile Acids and Hepatobiliary Disease. Kluwer, Boston (2004)

    Google Scholar 

  9. Mukhopadhyay, S., Maitra, U.: Chemistry and biology of bile acids. Curr. Sci. 87, 1666–1683 (2004)

    CAS  Google Scholar 

  10. Poša, M., Guzsvany, V., Csanadi, J.: Determination of critical micellar concentration of two monoketo derivatives of cholic acid. Colloids Surf. B: Biointerfaces. 74, 84–90 (2009)

    Article  PubMed  CAS  Google Scholar 

  11. Armstrong, M.J., Carey, M.C.: The hydrophobic-hydrophilic balance of bile salts. Inverse correlation between reverse-phase high performance liquid chromatographic mobilities and micellar cholesterol-solubilizing capacities. J. Lipid Res. 23, 70–80 (1982)

    Article  CAS  PubMed  Google Scholar 

  12. Bagheri, A., Chadha, J.: Micellar behaviour of amphiphilic drug propranolol hydrochloride with cationic surfactant (hyamine 1622) at different compositions in solution. Phys. Chem. Liq. 57, 221–234 (2019)

    Article  CAS  Google Scholar 

  13. Roda, A., Hofmann, A.F., Mysels, K.J.: The influence of bile salt structure on self-association in aqueous solutions. J. Biol. Chem. 258, 6362–6370 (1983)

    Article  CAS  PubMed  Google Scholar 

  14. Scamehorn J.F.: Phenomena in mixed surfactant systems. ACS Symposium Series, Vol. 311, Am. Chem. Soc., Washington DC (1986)

  15. Zhou, Q., Rosen, M.J.: Molecular interactions of surfactants in mixed monolayers at the air/aqueous solution interface and in mixed micelles in aqueous media: the regular solution approach. Langmuir 19, 4555–4562 (2003)

    Article  CAS  Google Scholar 

  16. Rosen, M.J., Zhou, Q.: Surfactant–surfactant interactions in mixed monolayer and mixed micelle formation. Langmuir 17, 3532–3537 (2001)

    Article  CAS  Google Scholar 

  17. Jafari-Chashmi, P., Bagheri, A.: The strong synergistic interaction between surface active ionic liquid and anionic surfactant in the mixed micelle using the spectrophotometric method. J. Mol. Liq. 269, 816–823 (2018)

    Article  CAS  Google Scholar 

  18. Bagheri, A., Jafari-Chashmi, P.: Study of aggregation behavior between N-lauryl sarcosine sodium and dodecyltrimethylammonium bromide in aqueous solution, using conductometric and spectrophotometric techniques. J. Mol. Liq. 282, 466–473 (2019)

    Article  CAS  Google Scholar 

  19. Shiau, B.J., Harwel, J.H., Scamehorn, J.F.: Precipitation of mixtures of anionic and cationic surfactants: III. Effect of added nonionic surfactant. J. Coll. Interface Sci. 167, 332–345 (1994)

    Article  CAS  Google Scholar 

  20. Villeneuve, M., Kaneshina, S., Imae, T., Aratono, M.: Vesicle-micelle equilibrium of anionic and cationic surfactant mixture studied by surface tension. Langmuir 15, 2029–2036 (1999)

    Article  CAS  Google Scholar 

  21. Ita, K.B., Preez, J.D., Plessis, J.D., Lane, M.E., Hadgraft, J.: Dermal delivery of selected hydrophilic drugs from elastic liposomes: effect of phospholipid formulation and surfactants. J. Pharm. Pharmacol. 9, 1215–1222 (2007)

    Google Scholar 

  22. Yadav, S.K., Parikh, K., Kumar, S.: Mixed micelle formation of cationic gemini surfactant with anionic bile salt: a PAH solublization study. Coll. Surf. A: Physicochem. Eng. Asp. 522, 105–112 (2017)

    Article  CAS  Google Scholar 

  23. Kumar, S., Patel, H.: Morphological transitions in aqueous CTAB–NaDC system: macroscopic and microscopic studies. J. Mol. Liq. 190, 74–80 (2014)

    Article  CAS  Google Scholar 

  24. Iglesias, E.: Enolization of benzoylacetone in aqueous surfactant solutions: a novel method for determining enolization constants. J. Phys. Chem. 100, 12592–12599 (1996)

    Article  CAS  Google Scholar 

  25. Holland, P.M., Rubingh, D.N.: Nonideal multicomponent mixed micelle model. J. Phys. Chem. 87, 1984–1990 (1983)

    Article  CAS  Google Scholar 

  26. Kumar, D., Azum, N., Rub, M.A., Asiri, A.M.: Interfacial and spectroscopic behavior of phenothiazine drug/bile salt mixture in urea solution. Chem. Papers 75, 3949–3956 (2021)

    Article  CAS  Google Scholar 

  27. Bagheri, A.: Comparison of the interaction between propranolol hydrochloride (PPL) with anionic surfactant and cationic surface active ionic liquid in micellar phase. Coll. Surf. A: Physicochem. Eng. Asp. 615, 126183 (2021)

    Article  CAS  Google Scholar 

  28. Ghasemi, A., Bagheri, A.: Effects of alkyl chain length on synergetic interaction and micelle formation between a homologous series of n-alkyltrimethylammonium bromides and amphiphilic drug propranolol hydrochloride. J. Mol. Liq. 298, 111948 (2020)

    Article  CAS  Google Scholar 

  29. Varade, D., Patel, V., Bahadur, A., Bahadur, P., Vethamuthu, M.S.: Mixed micelles of cationic surfactants and sodium cholate in water. IJBB. 41, 107–112 (2004)

    CAS  Google Scholar 

  30. Bagheri, A., Ahmadi, S.M.A.: Mixed micellization between amphiphilic drug propranolol hydrochloride and cetyltrimethylammonium bromide surfactant in aqueous medium. J. Mol. Liq. 230, 254–260 (2017)

    Article  CAS  Google Scholar 

  31. Belova, N.V., Girichev, G.V., Oberhammer, H., Hoang, T.N., Shlykov, S.A.: Tautomeric and conformational properties of benzoylacetone, CH3−C(O)−CH2−C(O)−C6H5: gas-phase electron diffraction and quantum chemical study. J. Phys. Chem. A 116, 3428–3435 (2012)

    Article  CAS  PubMed  Google Scholar 

  32. Shoji, N., Ueno, M., Meguro, K.: Determination of critical micelle concentrations of some surfactants by keto-enol tautomerism of benzoylacetone. J. Am. Oil Chem. Soc. 53, 165–167 (1976)

    Article  CAS  Google Scholar 

  33. Clint, J.H.: Micellization of mixed nonionic surface active agents. J. Chem. Soc. Faraday Trans. I 71, 1327–1334 (1975)

    Article  CAS  Google Scholar 

  34. Motomura, K., Aratono, M., Ogino, K., Abe, M.: In Mixed Surfactant Systems, Surfactant Science Series, vol. 46. Marcel Dekker, New York (1993)

    Google Scholar 

  35. Rajkhowa, S., Mahiuddin, S., Ismail, K.: An assessment of the aggregation and adsorption behavior of the sodium dodecylsulfate– cetyltrimethylammonium bromide mixed surfactant system in aqueous medium. J. Solution Chem. 46, 11–24 (2017)

    Article  CAS  Google Scholar 

  36. Azum, N., Rub, M.A., Asiri, A.M.: Micellization and interfacial behavior of binary and ternary mixtures in aqueous medium. J. Mol. Liq. 216, 94–98 (2016)

    Article  CAS  Google Scholar 

  37. Molla, M.R., Rub, M.A., Ahmed, A., Hoque, M.A.: Interaction between tetradecyl trimethyl ammonium bromide and benzyl dimethyl hexadecyl ammonium chloride in aqueous/urea solution at various temperatures: An experimental and theoretical investigation. J. Mol. Liq. 238, 62–70 (2017)

    Article  CAS  Google Scholar 

  38. Holland P.M., Rubingh D.N.: Mixed surfactants systems. ACS symposium series 50, Am.erican Chem. Soc., Washington DC (1992)

  39. Rubingh, D.N.: Mixed Micelle Solutions: Solution Chemistry of Surfactants. Springer, New York (1979)

    Book  Google Scholar 

  40. Rosen, M.J., Kunjappu, J.T.: Surfactants and Interfacial Phenomena, 4th edn. Wiley, Hoboken (2012).. (Chap. 11)

    Book  Google Scholar 

  41. Bagheri, A., Abolhasani, A.: Binary mixtures of cationic surfactants with Triton X-100 and the studies of physicochemical parameters of the mixed micelles. Korean J. Chem. Eng. 32, 308–315 (2015)

    Article  CAS  Google Scholar 

  42. Farahani, R.K., Bagheri, A.: Mixed micelle formation between a surface active ionic liquid and tricyclic antidepressant drugs (imipramine hydrochloride and amitriptyline hydrochloride). J. Mol. Liq. 336, 116306 (2021)

    Article  CAS  Google Scholar 

  43. Azum, N., Rub, M.A., Asiri, A.M.: Micellization and interfacial behavior of the sodium salt of Ibuprofen–BRIJ-58 in aqueous/brine solutions. J. Solution Chem. 45, 791–803 (2016)

    Article  CAS  Google Scholar 

  44. Sristy, S.M.I.H., Mahbub, S., Alam, M.M., Wabaidur, S.M., Rana, S., Hoque, M.A., Rub, M.A.: Interaction of tetradecyltrimethylammonium bromide with sodium dodecyl sulfate in aqueous/urea medium at several temperatures and compositions. J. Mol. Liq. 284, 12–22 (2019)

    Article  CAS  Google Scholar 

  45. Fatma, N., Panda, M., Kabir-ud-Din: Mixed micellization of novel cationic ester-bonded gemini surfactants: investigations by conductometric and tensiometric measurements. J. Mol. Liq. 219, 959–966 (2016)

    Article  CAS  Google Scholar 

  46. Hall, D.G.: Electrostatic effects in dilute solutions containing charged colloidal entities. J. Chem. Soc. Faraday Trans. I 87, 3529–3535 (1991)

    Article  CAS  Google Scholar 

  47. Rub, M.A., Asiri, A.M., Kumar, D., Azum, N., Khan, F.: Temperature dependent mixed micellization behavior of a drug-AOT mixture in an aqueous medium. Acta Phys. Chim Sin. 30, 699–707 (2014)

    Article  CAS  Google Scholar 

  48. Bagheri, A., Khalili, P.: Synergism between non-ionic and cationic surfactants in a concentration range of mixed monolayers at an air–water interface. RSC Adv. 7, 18151–18161 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support received for this research work from the Research Council of Semnan University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Bagheri.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moradi, A., Bagheri, A. Effect of a Biosurfactant on Micellar Behavior of Cationic Surfactants in Aqueous Solution. J Solution Chem 51, 499–516 (2022). https://doi.org/10.1007/s10953-022-01149-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01149-z

Keywords

Navigation