Skip to main content
Log in

Dissolution of Cellulose and Lignin with Biobased Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Choline-based ionic liquids, involving various alkyl chains lengths and carboxylates derived from biobased acids, have been synthetized with high yields through a three step procedure. These biobased ionic liquids showed excellent solubilisation properties for cellulose and lignin under mild conditions. Cellulose could be dissolved up to 32.5% and lignin up to 65.4% without transformation towards amorphous state. Comparison with commercial ionic liquids or commonly used ones has been also realized and discussed. The good dissolution of these two biopolymers in biobased ionic liquids will allow the design of new biomaterials from cellulose or lignin and the isolation of many molecules presenting interest in the chemical industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Swatloski, R.P., Spear, S.K., Holbrey, J.D., Rogers, R.D.: Dissolution of cellulose with ionic liquids. J. Am. Chem. Soc. 124, 4974–4975 (2002). https://doi.org/10.1021/ja025790m

    Article  PubMed  Google Scholar 

  2. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96, 673–686 (2005). https://doi.org/10.1016/j.biortech.2004.06.025

    Article  PubMed  Google Scholar 

  3. Sousa, L.C., Chundawat, S.P., Balan, V., Dale, B.E.: ‘Cradle-to-grave’ assessment of existing lignocellulose pretreatment technologies. Curr. Opin. Biotechnol. 20, 339–347 (2009). https://doi.org/10.1016/j.copbio.2009.05.003

    Article  Google Scholar 

  4. FitzPatrick, M., Champagne, P., Cunningham, M.F., Whitney, R.A.: A biorefinery processing perspective: treatment of lignocellulosic materials for the production of value-added products. Bioresour. Technol. 101, 8915–8922 (2010). https://doi.org/10.1016/j.biortech.2010.06.125

    Article  PubMed  Google Scholar 

  5. Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., Mikkola, J.P.: Dissolution of lignocellulosic materials and its constituents using ionic liquids: a review. Ind. Crops Prod. 32, 175–201 (2010). https://doi.org/10.1016/j.indcrop.2010.04.005

    Article  Google Scholar 

  6. McCormick, C.L., Callais, P.A., Hutchings, B.H.: Solution studies of cellulose in lithium chloride and N, N-dimethylacetamide. Macromolecules 18, 2394–2401 (1985). https://doi.org/10.1021/ma00154a010

    Article  Google Scholar 

  7. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. Engl. 44, 3358–3393 (2005). https://doi.org/10.1002/anie.200460587

    Article  PubMed  Google Scholar 

  8. Tadesse, H., Luque, R.: Advances on biomass pretreatment using ionic liquids: an overview. Energy Environ. Sci. 4, 3913–3929 (2011). https://doi.org/10.1039/C0EE00667J

    Article  Google Scholar 

  9. Zhu, S.D., Wu, Y.X., Chen, Q.M., Yu, Z., Wang, C., Jin, S., Ding, Y., Wu, G.: Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chem. 8(4), 325–327 (2006). https://doi.org/10.1039/B601395C

    Article  Google Scholar 

  10. Pinkert, A., Marsh, K.N., Pang, S., Staiger, M.P.: Ionic liquids and their interaction with cellulose. Chem. Rev. 109(12), 6712–6728 (2009). https://doi.org/10.1021/cr9001947

    Article  PubMed  Google Scholar 

  11. Lindman, B., Karlström, G., Stigsson, L.: On the mechanism of dissolution of cellulose. J. Mol. Liq. 156, 76–81 (2010). https://doi.org/10.1016/j.molliq.2010.04.016

    Article  Google Scholar 

  12. Wang, H., Gurau, G., Rogers, R.D.: Ionic liquid processing of cellulose. Chem. Soc. Rev. 41, 1519 (2012). https://doi.org/10.1039/C2CS15311D

    Article  PubMed  Google Scholar 

  13. Lee, S.H., Doherty, T.V., Linhardt, J.S.: Ionic liquid-mediated selective extraction of lignin from wood leading to enhanced enzymatic cellulose hydrolysis. Biotechnol. Bioeng. 102(5), 1368–1376 (2009). https://doi.org/10.1002/bit.22179

    Article  PubMed  Google Scholar 

  14. Boissou, F., Mühlbauer, A., De Oliveira Vigier, K., Leclercq, L., Kunz, W., Marinkovic, S., Estrine, B., Nardello-Rataj, V., Jérôme, F.: Transition of cellulose crystalline structure in biodegradable mixtures of renewably-sourced levulinate alkyl ammonium ionic liquids, γ-valerolactone and water. Green Chem. 16, 2463 (2014). https://doi.org/10.1039/C3GC42396D

    Article  Google Scholar 

  15. Mühlbauer, A., Maszkowska, J., Nardello-Rataj, V., Stolte, S.: Readily biodegradable and low-toxic biocompatible ionic liquids for cellulose processing. RSC Adv. 6, 87325–87331 (2016). https://doi.org/10.1039/C6RA14435G

    Article  Google Scholar 

  16. Zhang, Q., Benoit, M., De Oliveira Vigier, K., Barrault, J., Jérome, F.: Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem. Eur. J. 18, 1043–1046 (2012). https://doi.org/10.1002/chem.201103271

    Article  PubMed  Google Scholar 

  17. Garcia, H., Ferreira, R., Petkovic, M., Ferguson, J.L., Leitao, M.T., Gunaratne, H.Q.N., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S.: Dissolution of cork biopolymers in biocompatible ionic liquids. Green Chem. 12, 367–369 (2010). https://doi.org/10.1039/B922553F

    Article  Google Scholar 

  18. Gathergood, N., Scammells, P.J., Garcia, M.T.: Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquids. Green Chem. 8, 156–160 (2006). https://doi.org/10.1039/B516206H

    Article  Google Scholar 

  19. Stolte, S., Steudte, S., Igartua, A., Stepnowski, P.: The biodegradation of ionic liquids: tThe view from a chemical structure perspective. Curr. Org. Chem. 15, 1946–1973 (2011). https://doi.org/10.2174/138527211795703603

    Article  Google Scholar 

  20. Coleman, D., Gathergood, N.: Biodegradation studies of ionic liquids. Chem. Soc. Rev. 39, 600–637 (2010). https://doi.org/10.1039/B817717C

    Article  PubMed  Google Scholar 

  21. Fukaya, Y., Iizuka, Y., Sekikawa, K., Ohno, H.: Bio ionic liquids: room temperature ionic liquids composed wholly of biomaterials. Green Chem. 9, 1155–1157 (2007). https://doi.org/10.1039/B706571J

    Article  Google Scholar 

  22. Vijayaraghavan, B.C., MacFarlane, D.R., Kumar, R., Thompson, R., Surianarayanan, S., Sehgal, P.K., Aishwarya, M.: Biocompatibility of choline salts as crosslinking agents for collagen based biomaterials. Chem. Commun. 46, 294–296 (2010)

    Article  Google Scholar 

  23. Petkovic, M., Ferguson, J.L., Gunaratne, H.Q.N., Ferreira, R., Leitão, M.C., Seddon, K.R., Rebelo, L.P.N., Pereira, C.S.: Novel biocompatible cholinium-based ionic liquids: toxicity and biodegradability. Green Chem. 12, 643–649 (2010)

    Article  Google Scholar 

  24. Fahri, F., Bacha, K., Chiki, F.F., Mbakidi, J.P., Somenath, P., Bouquillon, S., Fourmentin, S.: Air pollution: new bio-based ionic liquids absorb both hydrophobic and hydrophilic volatile organic compounds with high efficiency. Environ. Chem. Lett. 18, 1403–1411 (2020)

    Article  Google Scholar 

  25. Bouquillon, S., Mbakidi, J.P.: Composés de type liquide ionique, leurs procédés de préparation et leurs utilisations. PCT/EP2020/070365 (2020)

  26. Kerkache, A., Mattlet, A., MBakidi, J.P., Livi, S., Duchet Rumeau, J., Budtova, T., Bouquillon, S.: Eur. J. Polym. in preparation.

  27. Pu, Y., Jiang, N., Ragauskas, A.J.: Ionic liquid as a green solvent for lignin. J. Wood Chem. Technol. 27, 23–33 (2007). https://doi.org/10.1080/02773810701282330

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Amisolver program (Excellence Framework). We are grateful to the Public Authorities of Champagne-Ardenne and FEDER for material funds and post-doctoral fellowships to J.P.M and also to the SATT Nord for an engineer position for J.P.M.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Pierre Mbakidi or Sandrine Bouquillon.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mbakidi, JP., Kerkache, A., Lazar, F. et al. Dissolution of Cellulose and Lignin with Biobased Ionic Liquids. J Solution Chem 51, 345–356 (2022). https://doi.org/10.1007/s10953-022-01148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01148-0

Keywords

Navigation