Skip to main content
Log in

Quadratic Modeling and Optimization of Quaternary Equilibria of Liquid–Liquid Systems of General Types, Reactive Extraction Mixtures and Aqueous Biphasic Systems

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper studies quadratic modeling and optimization of quaternary equilibria of liquid–liquid systems of general types, reactive extraction mixtures and aqueous biphasic systems in order to develop an understandable basis of functionally dependent variables that govern optimal solute partitioning within the relevant system. The proposed three quadratic models (QMG, QMR and QMAB), being compatible with multilinear methodology, mimic the equilibrium properties of six test systems relatively accurately, and subsequently, are applied to globally optimizing quaternary equilibria. To remedy an appropriate optimization algorithm, the hybrid gradient method and the derivative variation method are treated and their use for tackling different problems is discussed. The problem of fair imitation of a global optimality is then addressed. The algorithmic solution is completed by the numerical results of six testing problems, being indicative of the fact that the distribution, geometric and solvatochromic properties of components are primary concern to be accounted for a reliable prediction of optimal phase equilibria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Michelsen, M.L., Mollerup, J.M.: Thermodynamic Models: Fundamentals & Computational Aspects, 2nd edn. Tie-Line Publications, Denmark (2007)

    Google Scholar 

  2. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics. John Wiley, New York (2006)

    Google Scholar 

  3. Kontogeorgis, G.M., Folas, G.K.: Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories. Wiley, New York (2010)

    Book  Google Scholar 

  4. Kontogeorgis, G.M., Tsivintzelis, I., Michelsen, M.L., Stenby, E.H.: Towards predictive association theories. Fluid Phase Equilib. 301, 244–256 (2011)

    Article  CAS  Google Scholar 

  5. Gani, R., Muro-Suñé, N., Sales-Cruz, M., Leibovici, C., O’Connell, J.P.: Mathematical and numerical analysis of classes of property models. Fluid Phase Equilib. 250, 1–32 (2006)

    Article  CAS  Google Scholar 

  6. Ferrarini, F., Flôres, G.B., Muniz, A.R., Soares, R.P.: An open and extensible sigma-profile data base for COSMO-based models. AIChE J. 64, 3443–3455 (2018)

    Article  CAS  Google Scholar 

  7. Senol, A.: Modeling liquid–liquid equilibrium of quaternary systems with Integrated Quadratic Solvation Relationship (IQSR) in conjunction with the boundary constraints identified by ternary subsystems. Fluid Phase Equilib. 478, 58–74 (2018)

    Article  CAS  Google Scholar 

  8. Gross, J., Sadowski, G.: Perturbed-chain SAFT: an equation of state based on a perturbation theory for chain molecules. Ind. Eng. Chem. Res. 40, 1244–1260 (2001)

    Article  CAS  Google Scholar 

  9. Nikolaidis, I.K., Economou, I.G., Boulougouris, G.C., Peristeras, L.D.: Calculation of the phase envelope of multicomponent mixtures with the bead spring method. AIChE J. 62, 868–879 (2016)

    Article  CAS  Google Scholar 

  10. Zhigljavsky, A.A.: Theory of Global Random Search. Springer, Dordrecht (1991)

    Book  Google Scholar 

  11. Bhatti, M.A.: Practical Optimization Methods. Springer, New York (2000)

    Book  Google Scholar 

  12. Dréo, J., Pétrowski, A., Siarry, P., Taillard, E.: Metaheuristics for Hard Optimization. Springer, Berlin (2006)

    Google Scholar 

  13. Courrieu, P.: A distributed search algorithm for global optimization on numerical spaces. Recherche opėrationnelle/Operations Research 27, 281–292 (1993)

    Google Scholar 

  14. Kan, A.H.G.R., Timmer, G.T.: Stochastic methods for global optimization. Am. J. Mathem. Managem. Sci. 4, 7–40 (1984)

  15. Senol, A.: Optimization of phase equilibria of quaternary liquid–liquid systems with a hybrid gradient method (HGM) using polynomial and quadratic differentiable models. Fluid Phase Equilib. 526, 112800 (2020)

  16. Tamada, J.A., Kertes, A.S., King, C.J.: Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 29, 1319–1326 (1990)

    Article  CAS  Google Scholar 

  17. Schuur, B., Winkelman, J.G.M., Heeres, H.J.: Equilibrium studies on enantioselective liquid–liquid amino acid extraction using a cinchona alkaloid extractant. Ind. Eng. Chem. Res. 47, 10027–10033 (2008)

    Article  CAS  Google Scholar 

  18. Krzyzaniak, A., Schuur, B., de Haan, A.B.: Equilibrium studies on lactic acid extraction with N, N-didodecylpyridin-4-amine (DDAP) extractant. Chem. Eng. Sci. 109, 236–243 (2014)

    Article  CAS  Google Scholar 

  19. Wang, J., Lu, D., Sun, Q., Zhao, H., Ling, X., Ouyang, P.: Reactive extraction and recovery of mono-caffeoylquinic acids from tobacco wastes by trialkylphosphine oxide. Chem. Eng. Sci. 78, 53–62 (2012)

    Article  CAS  Google Scholar 

  20. Senol, A.: Extraction equilibria of nicotinic acid using Alamine 336 and conventional solvents: effect of diluent. Chem. Eng. J. 83, 155–163 (2001)

    Article  CAS  Google Scholar 

  21. Senol, A.: Effect of diluent on amine extraction of acetic acid: modeling considerations. Ind. Eng. Chem. Res. 43, 6496–6506 (2004)

    Article  CAS  Google Scholar 

  22. Senol, A., Lalikoglu, M., Bilgin, M.: Modeling extraction equilibria of butyric acid distributed between water and tri-n-butyl amine/diluent or tri-n-butyl phosphate/diluent system: extension of the LSER approach. Fluid Phase Equilib. 385, 153–165 (2015)

    Article  CAS  Google Scholar 

  23. Kertes, A.S., King, C.J.: Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 28, 269–282 (1986)

    Article  CAS  PubMed  Google Scholar 

  24. Kirsch, T., Maurer, G.: Distribution of oxalic acid between water and organic solutions of tri-n-octylamine. Ind. Eng. Chem. Res. 35, 1722–1735 (1996)

    Article  CAS  Google Scholar 

  25. Katritzky, A.R., Tämm, K., Kuanar, M., Fara, D.C., Oliferenko, A., Oliferenko, P., Huddleston, J.G., Rogers, R.D.: Aqueous biphasic systems, partitioning of organic molecules: a QSPR treatment. J. Chem. Inf. Comput. Sci. 44, 136–142 (2004)

    Article  CAS  PubMed  Google Scholar 

  26. Willauer, H.D., Huddleston, J.G., Rogers, R.D.: Solute partitioning in aqueous biphasic systems composed of polyethylene glycol and salt: the partitioning of small neutral organic species. Ind. Eng. Chem. Res. 41, 1892–1904 (2002)

    Article  CAS  Google Scholar 

  27. Moody, M.L., Willauer, H.D., Griffin, S.T., Huddleston, J.G., Rogers, R.D.: Solvent property characterization of poly(ethylene glycol)/dextran aqueous biphasic systems using the free energy of transfer of a methylene group and a linear solvation energy relationship. Ind. Eng. Chem. Res. 44, 3749–3760 (2005)

    Article  CAS  Google Scholar 

  28. Walter, H.: Partitioning in Aqueous Two-Phase System: Theory, Methods, Uses, and Applications to Biotechnology. Elsevier, Amsterdam (2012)

    Google Scholar 

  29. Hatti-Kaul, R.: Aqueous Two-Phase Systems: Methods and Protocols. Humana Press Inc., New Jersey (2000)

    Book  Google Scholar 

  30. Bao, X., Chen, Z., Han, J., Wang, Y., Li, C., Ni, L.: Liquid–liquid equilibrium of imidazolium ionic liquids + phosphate + water aqueous two-phase systems and correlation. J. Solution Chem. 48, 1167–1187 (2019)

    Article  CAS  Google Scholar 

  31. Korchak, P.A., Alopina, E.V., Pukinsky, I.B., Safonova, E.A.: Liquid–liquid equilibria of aqueous biphasic systems containing 1-alkyl-3-methylimidazolium amino acid ionic liquids with different anions (L-Leucine, L-Valine, L-Lysine) and inorganic salt (tripotassium phosphate, potassium carbonate). Fluid Phase Equilib. 525, 112789 (2020)

    Article  CAS  Google Scholar 

  32. Pereira, J.F.B., Freire, M.G., Coutinho, J.A.P.: Aqueous two-phase systems: Towards novel and more disruptive applications. Fluid Phase Equilib. 505, 112341 (2020)

    Article  CAS  Google Scholar 

  33. Durán, A., Claros, M., Jimenez, Y.P.: Molybdate ion partition in the aqueous two-phase system formed by CuSO4 + PEG 4000 + H2O at different pH and temperatures. J. Mol. Liq. 249, 562–572 (2018)

    Article  Google Scholar 

  34. Willauer, H.D., Huddleston, J.G., Rogers, R.D.: Solvent properties of aqueous biphasic systems composed of polyethylene glycol and salt characterized by the free energy of transfer of a methylene group between the phases and by a linear solvation energy relationship. Ind. Eng. Chem. Res. 41, 2591–2601 (2002)

    Article  CAS  Google Scholar 

  35. Senol, A.: Optimal extractive separation of chromium(VI) from acidic chloride and nitrate media by commercial amines: equilibrium modeling through linear solvation energy relation. Ind. Eng. Chem. Res. 52, 16321–16334 (2013)

    Article  CAS  Google Scholar 

  36. Senol, A., Baslıoglu, B.: Phase equilibria of ternary systems (water + pyruvic acid + high boiling alcohol): thermodynamic modeling and optimization of extraction. J. Chem. Thermodyn. 55, 92–101 (2012)

    Article  CAS  Google Scholar 

  37. Toikka, M., Samarov, A., Trofimova, M., Golikova, A., Tsvetov, N., Toikka, A.: Solubility, liquid–liquid equilibrium and critical states for the quaternary system acetic acid–ethanol–ethyl acetate–water at 303.15 K and 313.15 K. Fluid Phase Equilib. 373, 72–79 (2014)

    Article  CAS  Google Scholar 

  38. Kim, Y.-K., Ok, D.-S., Park, D.-W.: Liquid–liquid equilibrium for the quaternary system water + tetrahydrofuran + toluene + 1-butanol mixture at 25 °C and atmospheric pressure. J. Chem. Eng. Data 53, 36–40 (2008)

    Article  CAS  Google Scholar 

  39. Himmelblau, D.M., Riggs, J.: Basic Principles and Calculations in Chemical Engineering, 8th edn. Prentice-Hall Inc, Englewood Cliffs, New Jersey (2012)

    Google Scholar 

  40. Senol, A., Çehreli, S., Özparlak, N., Andreatta, A.E.: Optimization of reactive extraction of C1–C4 aliphatic monocarboxylic acids from aqueous solutions: modeling solvation effect with extended-LSER, A-UNIFAC and SPR. Asia-Pacif. J. Chem. Eng. 12, 919–937 (2017)

    Article  CAS  Google Scholar 

  41. Edrisi, S.,·Bakhshi, H., Rahimnejad, M.: Experimental and thermodynamic modeling of quaternary aqueous two‑phase system of polyethylene glycol, sodium tartrate, water and Penicillin G. J. Solution Chem. 48, 1206–1221 (2019)

  42. Pazuki, G., Vossoughi, M., Taghikhani, V.: Partitioning of penicillin G acylase in aqueous two-phase systems of poly(ethylene glycol) 20000 or 35000 and potassium dihydrogen phosphate or sodium citrate. J. Chem. Eng. Data 55, 243–248 (2010)

    Article  CAS  Google Scholar 

  43. Törn, A., Ali, M.M., Viitanen, S.: Stochastic global optimization: problem classes and solution techniques. J. Global Optimiz. 14, 437–447 (1999)

    Article  Google Scholar 

  44. Kamlet, M.J., Doherty, R.M., Abraham, M.H., Marcus, Y., Taft, R.W.: Linear solvation energy relationships. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). J. Phys. Chem. 92, 5244–5255 (1988)

    Article  CAS  Google Scholar 

  45. Marcus, Y.: Linear solvation energy relationships. Correlation and prediction of the distribution of organic solutes between water and immiscible organic solvents. J. Phys. Chem. 95, 8886–8891 (1991)

    Article  CAS  Google Scholar 

  46. Barton, A.F.M.: Solubility parameters. Chem. Rev. 75, 731–753 (1975)

    Article  CAS  Google Scholar 

  47. Katritzky, A.R., Fara, D.C., Yang, H.F., Tämm, K., Tamm, T., Karelson, M.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)

    Article  CAS  PubMed  Google Scholar 

  48. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  49. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aynur Senol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 103 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, A. Quadratic Modeling and Optimization of Quaternary Equilibria of Liquid–Liquid Systems of General Types, Reactive Extraction Mixtures and Aqueous Biphasic Systems. J Solution Chem 51, 190–208 (2022). https://doi.org/10.1007/s10953-022-01143-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-022-01143-5

Keywords

Navigation