Abstract
A gas chromatographic headspace analysis method was used to experimentally determine gas-to-liquid partition coefficients and infinite dilution activity coefficients for two saturated (2,2,4-trimethylpentane, cyclooctane) and 3 unsaturated hydrocarbons (1,7-octadiene, 1-hexyne, 4-vinyl-1-cyclohexene), one aromatic hydrocarbon (propylbenzene), one haloalkane (1,3-dichloropropane) and four halobenzenes (fluorobenzene, chlorobenzene, 1,2-dichlorobenzene, bromobenzene), two cyclic ethers (tetrahydrofuran, 1,4-dioxane), two alcohols (1-propanol, 2-propanol), three alkyl acetates (ethyl acetate, butyl acetate, pentyl acetate), and one alkanenitrile (acetonitrile) dissolved in 2-pyrrolidone at 298.15 K. The experimental results of the headspace chromatographic measurements, combined with published solubility and infinite dilution activity coefficient data, were used to derive Abraham model correlations for describing solute transfer into 2-pyrrolidone. Mathematical correlations based on the Abraham model describe the observed partition coefficient and activity coefficient data to within 0.14 log10 units (or less).
Similar content being viewed by others
References
Sedov, I.A., Salikov, T.M., Qian, E., Wadawadigi, A., Zha, O., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methyl-2-butanol based on measured activity coefficient and solubility data at 29815 K. J. Mol. Liq. 293, 111454/1-111454/10 (2019)
Sedov, I.A., Salikov, T.M., Khaibrakhmanova, D.R., Wadawadigi, A., Zha, O., Qian, E., Hart, E., Barrera, M., Acree, W.E., Jr., Abraham, M.H.: Determination of Abraham model correlations for solute transfer into propyl acetate based on experimental activity coefficient and solubility data. J. Solution Chem. 47, 634–653 (2018)
Sedov, I.A., Salikov, T.M., Wadawadigi, A., Zha, O., Qian, E., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for describing the thermodynamic properties of solute transfer into pentyl acetate based on headspace chromatographic and solubility measurements. J. Chem. Thermodyn. 124, 133–140 (2018)
Hart, E., Grover, D., Zettl, H., Koshevarova, V., Zhang, S., Dai, C., Acree, W.E., Jr., Sedov, I.A., Stolov, M.A., Abraham, M.H.: Abraham model correlations for solute transfer into 2-methoxyethanol from water and from the gas phase. J. Mol. Liq. 209, 738–744 (2015)
Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-ethoxyethanol from water and from the gas phase. J. Mol. Liq. 208, 63–70 (2015)
Sedov, I.A., Khailbrakhmanova, D., Hart, E., Grover, D., Zettl, H., Koshevarova, V., Dai, C., Zhang, S., Schmidt, A., Acree, W.E., Abraham, M.H.: Development of Abraham model correlations for solute transfer into both 2-propoxyethanol and 2-isopropoxyethanol at 298.15 K. J. Mol. Liq. 212, 833–840 (2015)
Sedov, I.A., Stolov, M.A., Hart, E., Grover, D., Zettl, H., Koshevaronva, V., Dai, C., Zhang, S., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for solute transfer into 2-butoxyethanol from water and from the gas phase at 298 K. J. Mol. Liq. 209, 196–202 (2015)
Sedov, I.A., Magsumov, T.I., Hart, E., Higgins, E., Grover, D., Zettl, H., Zad, M., Acree, W.E., Jr., Abraham, M.H.: Abraham model expressions for describing water-to-diethylene glycol and gas-to-diethylene glycol solute transfer processes at 298.15 K. J. Solution Chem. 46, 331–351 (2017)
Sedov, I.A., Magsumov, T.I., Hart, E., Ramirez, A.M., Cheeran, S., Barrera, M., Horton, M.Y., Wadawadigi, A., Zha, O., Tong, X.Y., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for triethylene glycol solvent derived from infinite dilution activity coefficient, partition coefficient and solubility data measured at 298.15 K. J. Solution Chem. 46, 2249–2267 (2017)
Sedov, I.A., Salikov, T., Hart, E., Higgins, E., Acree, W.E., Jr., Abraham, M.H.: Abraham model linear free energy relationships for describing the partitioning and solubility behavior of nonelectrolyte organic solutes dissolved in pyridine at 298.15 K. Fluid Phase Equilib. 431, 68–74 (2017)
Magsumov, T.I., Sedov, I.A., Acree, W.E., Jr.: Development of Abraham model correlations for enthalpies of solvation of solutes dissolved in N-methylformamide, 2-pyrrolidone and N-methylpyrrolidone. J. Mol. Liq. 323, 114609/1-114609/10 (2021)
Varfolomeev, M.A., Rakipov, I.T., Khachatrian, A.A., Acree, W.E., Jr., Brumfield, M., Abraham, M.H.: Effect of halogen substitution on the enthalpies of solvation and hydrogen bonding of organic solutes in chlorobenzene and 1,2-dichlorobenzene derived using multi-parameter correlation. Thermochim. Acta 617, 8–20 (2015)
Varfolomeev, M.A., Rakipov, I.T., Acree, W.E., Jr., Brumfield, M., Abraham, M.H.: Examination of hydrogen-bond interactions between dissolved solutes and alkylbenzene solvents based on Abraham model correlations derived from measured enthalpies of solvation. Thermochim. Acta 594, 68–79 (2014)
Wilson, A., Tian, A., Dabadge, N., Acree, W.E., Jr., Varfolomeev, M.A., Rakipov, I.T., Arkipova, S.M., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases in dichloromethane and 1,4-dioxane. Struct. Chem. 24, 1841–1853 (2013)
Stephens, T.W., Chou, V., Quay, A.N., Acree, W.E., Jr., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases dissolved in 1-propanol and tetrahydrofuran. Thermochim. Acta 519, 103–113 (2011)
Stephens, T.W., De La Rosa, N.E., Saifullah, M., Ye, S., Chou, V., Quay, A.N., Acree, W.E., Jr., Abraham, M.H.: Enthalpy of solvation correlations for organic solutes and gases dissolved in 2-propanol, 2-butanol, 2-methyl-1-propanol and ethanol. Thermochim. Acta 523, 214–220 (2011)
Varfolomeev, M.A., Stolov, M.A., Nagrimanov, R.N., Rakipov, I.T., Acree, W.E., Jr., Abraham, M.H.: Analysis of solute–pyridine intermolecular interactions based on experimental enthalpies of solution and enthalpies of solvation of solutes dissolved in pyridine. Thermochim. Acta 660, 11–17 (2018)
Stolov, M.A., Zaitseva, K.V., Varfolomeev, M.A., Acree, W.E., Jr.: Enthalpies of solution and enthalpies of solvation of organic solutes in ethylene glycol at 298 K: prediction and analysis of intermolecular interaction contributions. Thermochim. Acta 648, 91–99 (2017)
Huang, X., Li, S.: Solubility of acetylene in alcohols and ketones. J. Chem. Eng. Data 63, 2127–2134 (2018)
Gruber, D., Topphoff, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution using gas–liquid chromatography. 9. Results for various solutes with the stationary phases 2-pyrrolidone and N-methylformamide. J. Chem. Eng. Data 43, 935–940 (1998)
Abraham, M.H., Acree, W.E., Jr., Cometto-Muniz, J.E.: Partition of compounds from water and from air into amides. New J. Chem. 33, 2034–2043 (2008)
Gharagheizi, F., Eslamimanesh, A., Ilani-Kashkouli, P., Mohammadi, A.H., Richon, D.: Determination of vapor pressure of chemical compounds: a group contribution model for An extremely large database. Ind. Eng. Chem. Res. 51, 7119–7125 (2012)
Domanska, U., Lukoshko, E.V.: Thermodynamics and activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylmorpholinium tricyanomethanide. J. Chem. Thermodyn. 68, 53–59 (2014)
Domanska, U., Krolikowski, M., Acree, W.E., Baker, G.A.: Physicochemical properties and activity coefficients at infinite dilution for organic solutes and water in a novel bicyclic guanidinium superbase-derived protic ionic liquid. J. Chem. Thermodyn. 58, 62–69 (2013)
Karpinska, M., Wlazlo, M.: Application of dicyanamide-based ionic liquid in separation of binary mixtures based on gamma infinity data measurements. J. Mol. Liq. 310, 113176/1-113176/10 (2020)
Wlazlo, M., Karpinska, M., Domanska, U.: Separation of water/butan-1-ol mixtures based on limiting activity coefficients with phosphonium-based ionic liquid. J. Chem. Thermodyn. 113, 183–191 (2017)
Mutelet, F., Moise, J.-C., Skrzypczak, A.: Evaluation of the performance of trigeminal tricationic ionic liquids for separation problems. J. Chem. Eng. Data 57, 918–927 (2012)
Chatzitakis, P., Safarov, J., Opferkuch, F., Dawoud, B., Hassel, E.: Vapor pressures and activity coefficients of 2,2,2-trifluoroethanol in binary mixtures with 1,3-dimethyl-2-imidazolidinone and 2-pyrrolidone. J. Mol. Liq. 305, 112828/1-112828/10 (2020)
Guillen, M.D., Blanco, J., Canga, J.S., Blanco, C.G.: Study of the effectiveness of 27 organic solvents in the extraction of coal tar pitches. Energy Fuels 5, 188–192 (1991)
Bikkulov, A.Z., Khazipov, RKh.: Choosing of selective solvents for the extraction of low-molecular-weight aromatic hydrocarbons. Khim. Tekhnol. Topliv Masel 16, 15–19 (1971)
Ma, S., Hwang, S., Lee, S., Acree, W.E., No, K.T.: Incorporation of hydrogen bond angle dependency into the generalized solvation free energy density model. J. Chem. Inf. Model. 58, 761–772 (2018)
Lee, S., Cho, K.-H., Acree, W.E., Tai, K.: Development of surface-SFED models for polar solvents. J. Chem. Inf. Model. 52, 440–448 (2012)
Hille, C., Ringe, S., Deimel, M., Kunkel, C., Acree, W.E., Reuter, K., Oberhofer, H.: Generalized molecular solvation in non-aqueous solutions by a single parameter implicit solvation scheme. J. Chem. Phys. 150, 041710/1-041710/13 (2019)
Kashefolgheta, S., Oliveira, M.P., Rieder, S.R., Horta, B.A.C., Acree, W.E., Jr., Hunenberger, P.H.: Evaluating classical force fields against experimental cross-solvation free energies. J. Chem. Theory Comp. 16, 7556–7580 (2020)
Klamt, A.: The COSMO and COSMO-RS solvation models. Wiley Interdiscip. Rev. Comput. Mol. Sci. 8, e1338/1-e1338/11 (2018)
Klamt, A., Diedenhofen, M.: Calculation of solvation free energies with DCOSMO-RS. J. Phys. Chem. A 119, 5439–5445 (2015)
Xue, Z., Mu, T., Gmehling, J.: Comparison of the a priori COSMO-RS models and group contribution methods: original UNIFAC, modified UNIFAC(Do) as well as modified UNIFAC(Do) consortium. Ind. Eng. Chem. Res. 51, 11809–11817 (2012)
Roese, S.N., Heintz, J.D., Uzat, C.B., Schmt, A.J., Margulis, G.V., Sabatino, S.J., Paluch, A.S.: Assessment of the SM12, SM8, and SMD solvation models for predicting limiting activity coefficients at 298.15 K. Processes 8, 623/1-623/24 (2020)
Dhakal, P., Roese, S.N., Lucas, M.A., Paluch, A.S.: Predicting limiting activity coefficients and phase behavior from molecular structure: expanding MOSCED to alkanediols using group contribution methods and electronic structure calculations. J. Chem. Eng. Data 63, 2586–2598 (2018)
Brouwer, T., Schuur, B.: Model performances evaluated for infinite dilution activity coefficients prediction at 298.15 K. Ind. Eng. Chem. Res. 58, 8903–8914 (2019)
Luiz-da-Silveira, C., Salau, N.P.G.: From Wilson to F-SAC: a comparative analysis of correlative and predictive activity coefficient models to determine VLE and IDAC of binary systems. Fluid Phase Equilib. 464, 1–11 (2018)
Ahmadian Behrooz, H., Boozarjomehry, R.B.: Prediction of limiting activity coefficients for binary vapor–liquid equilibrium using neural networks. Fluid Phase Equilib. 433, 174–183 (2017)
Xiong, R., Sandler, S.I., Burnett, R.I.: An improvement to COSMO-SAC for predicting thermodynamic properties. Ind. Eng. Chem. Res. 53, 8265–8278 (2014)
Saidi, C.N., Mielczarek, D.C., Paricaud, P.: Predictions of solvation Gibbs free energies with COSMO-SAC approaches. Fluid Phase Equilib. 517, 112614/1-112614/14 (2020)
Borhani, T.N., Garcia-Munoz, S., Vanesa Luciani, C., Galindo, A., Adjiman, C.S.: Hybrid QSPR models for the prediction of the free energy of solvation of organic solute/solvent pairs. Phys. Chem. Chem. Phys 21, 13706–13720 (2019)
Lisboa, F.M., Pliego, J.R., Jr.: Infinite dilution activity coefficient from SMD calculations: accuracy and performance for predicting liquid–liquid equilibria. J. Mol. Model. 24, 1–7 (2018)
Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22, 73–83 (1993)
Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037, 29–47 (2004)
Abraham, M.H., Smith, R.E., Luchtefeld, R., Boorem, A.J., Luo, R., Acree, W.E., Jr.: Prediction of solubility of drugs and other compounds in organic solvents. J. Pharm. Sci. 99, 1500–1515 (2010)
Abraham, M.H., Acree, W.E., Jr., Cometto-Muniz, J.E.: Descriptors for terpene esters from chromatographic and partition measurements: estimation of human odor detection thresholds. J. Chromatogr. A 1609, 460428/1-460428/5 (2020)
Abraham, M.H., Acree, W.E., Jr.: Gas–solvent and water–solvent partition of trans-stilbene at 298 K. J. Mol. Liq. 238, 58–61 (2017)
Ulrich, N., Endo, S., Brown, T.N., Watanabe, N., Bronner, G., Abraham, M.H., Goss, K.-U.: UFZ-LSER database v 3.2.1 [Internet], Leipzig, Germany, Helmholtz Centre for Environmental Research-UFZ. (2017) http://www.ufz.de/lserd. Accessed 22 May 2021
Shanmugam, N., Eddula, S., Acree, W.E., Jr., Abraham, M.H.: Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization for linear C7–C14 alkynes from gas chromatographic retention index data. Eur. Chem. Bull. 10, 46–57 (2021)
Tirumala, P., Huang, J., Eddula, S., Jiang, C., Xu, A., Liu, G., Acree, W.E., Jr., Abraham, M.H.: Calculation of Abraham model L-descriptor and standard molar enthalpies of vaporization and sublimation for C9–C26 mono-alkyl alkanes and polymethyl alkanes. Eur. Chem. Bull. 9, 317–328 (2020)
Abraham, M.H., Acree, W.E., Jr., Rafols, C., Roses, M.: Equations for the correlation and prediction of partition coefficients of neutral molecules and ionic species in the water–isopropanol solvent system. J. Solution Chem. 50, 458–472 (2021)
Abraham, M.H., Acree, W.E.: Equations for the partition of neutral molecules, ions and ionic species from water to water–methanol mixtures. J. Solution Chem. 45, 861–874 (2016)
Abraham, M.H., Acree, W.E., Jr.: Equations for the partition of neutral molecules, ions and ionic species from water to water–ethanol mixtures. J. Solution Chem. 41, 730–740 (2012)
Abraham, M.H., Acree, W.E., Jr.: Partition coefficients and solubilities of compounds in the water–ethanol solvent system. J. Solution Chem. 40, 1279–1290 (2011)
Smart, K.R., Garcia, E., Oloyede, B., Fischer, R., Golden, T., Acree, W.E., Jr., Abraham, M.H.: The partition of organic compounds from water into the methyl isobutyl ketone extraction solvent with updated Abraham equation. Phys. Chem. Liq. 59, 431–441 (2021)
Smart, K., Connolly, E., Ocon, L., Golden, T.D., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for describing the partition of organic compounds from water into methyl ethyl ketone extraction solvent. Phys. Chem. Liq. (2021). https://doi.org/10.1080/00319104.2021.1907845
Jiang, B., Horton, M.Y., Acree, W.E., Jr., Abraham, M.H.: Ion-specific equation coefficient version of the Abraham model for ionic liquid solvents: determination of coefficients for tributylethylphosphonium, 1-butyl-1-methylmorpholinium, 1-allyl-3-methylimidazolium and octyltriethylammonium cations. Phys. Chem. Liq. 55, 358–385 (2017)
Twu, P., Anderson, J., Stovall, D.M., Zhang, S., Dai, C., Schmidt, A., Acree, W.E., Jr., Abraham, M.H.: Determination of the solubilising character of 2-methoxyethyl-(dimethyl)ethylammonium tris(pentafluoroethyl)trifluorophosphate based on the Abraham solvation parameter model. Phys. Chem. Liq. 2016(54), 110–126 (2016)
Mutelet, F., Ravula, S., Baker, G.A., Woods, D., Tong, X., Acree, W.E., Jr.: Infinite dilution activity coefficients and gas-to-liquid partition coefficients of organic solutes dissolved in 1-benzylpyridinium bis(trifluoromethylsulfonyl)imide and 1-cyclohexylmethyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide. J. Solution Chem. 47, 308–335 (2018)
Abraham, M.H., Ibrahim, A., Acree, W.E.: Air to lung partition coefficients for volatile organic compounds and blood to lung partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 43(3), 478–485 (2008)
Abraham, M.H., Ibrahim, A., Acree, W.E., Jr.: Air to liver partition coefficients for volatile organic compounds and blood to liver partition coefficients for volatile organic compounds and drugs. Eur. J. Med. Chem. 42, 743–751 (2007)
Abraham, M.H., Ibrahim, A.: Blood or plasma to skin distribution of drugs: a linear free energy analysis. Int. J. Pharm. 329, 129–134 (2007)
Abraham, M.H., Ibrahim, A.: Air to fat and blood to fat distribution of volatile organic compounds and drugs: linear free energy analyses. Eur. J. Med. Chem. 41, 1430–1438 (2006)
Abraham, M.H., Ibrahim, A., Acree, W.E., Jr.: Air to muscle and blood/plasma to muscle distribution of volatile organic compounds and drugs: linear free energy analyses. Chem. Res. Toxicol. 19, 801–808 (2006)
Abraham, M.H., Ibrahim, A., Zhao, Y., Acree, W.E., Jr.: A data base for partition of volatile organic compounds and drugs from blood/plasma/serum to brain, and an LFER analysis of the data. J. Pharm. Sci. 95, 2091–2100 (2006)
Hart, E.F., Grover, D., Zettl, H., Koshevarova, V., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model expressions for predicting enthalpies of solvation of solutes dissolved in acetic acid. Phys. Chem. Liq. 54, 141–154 (2016)
Huang, J., Eddula, S., Tirumala, P., Casillas, T., Acree, W.E., Jr., Abraham, M.H.: Updated Abraham model correlations to describe enthalpies of solvation of solutes dissolved in heptane, cyclohexane and N N-dimethylformamide. Phys. Chem. Liq. 59, 442–453 (2021)
Lu, J.Z., Acree, W.E., Jr., Abraham, M.H.: Abraham model correlations for enthalpies of solvation of organic solutes dissolved in N, N-dimethylacetamide, 2-butanone and tetrahydrofuran (updated) at 298.15 K. Phys. Chem. Liq. 58, 675–692 (2020)
Lu, J.Z., Acree, W.E., Jr., Abraham, M.H.: Updated Abraham model correlations for enthalpies of solvation of organic solutes dissolved in benzene and acetonitrile. Phys. Chem. Liq. 57, 84–99 (2019)
Higgins, E., Acree, W.E., Jr., Abraham, M.H.: Development of Abraham model correlations for enthalpies of solvation of organic solutes dissolved in 1,3-dioxolane. Phys. Chem. Liq. 54, 786–796 (2016)
Garcia, B., Aparicio, S., Alcalde, R., Ruiz, R., Davila, M.J., Leal, J.M.: Characterization of lactam-containing binary solvents by solvatochromic indicators. J. Phys. Chem. B 108, 3024–3029 (2004)
George, J., Sastry, N.V.: Densities, viscosities, speeds of sound, and relative permittivities for water + cyclic amides (2-pyrrolidinone, 1-methyl-2-pyrrolidinone, and 1-vinyl-2-pyrrolidinone) at different temperatures. J. Chem. Eng. Data 49, 235–242 (2004)
Papamatthaiakis, D., Aroni, F., Havredaki, V.: Isentropic compressibilities of (amide + water) mixtures: a comparative study. J. Chem. Thermodyn. 40, 107–118 (2007)
Schult, C.J., Neely, B.J., Robinson, R.L., Gasem, K.A.M., Todd, B.A.: Infinite-dilution activity coefficients for several solutes in hexadecane and in N-methyl-2-pyrrolidone (NMP): experimental measurements and UNIFAC predictions. Fluid Phase Equilib. 179, 117–129 (2001)
Krummen, M., Gmehling, J.: Measurement of activity coefficients at infinite dilution in N-methyl-2-pyrrolidone and N-formylmorpholine and their mixtures with water using the dilutor technique. Fluid Phase Equilib. 215, 283–294 (2004)
Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid triethylsulphonium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 41, 754–758 (2009)
Domanska, U., Laskowska, M.: Measurements of activity coefficients at infinite dilution of aliphatic and aromatic hydrocarbons, alcohols, thiophene, tetrahydrofuran, MTBE, and water in ionic liquid [BMIM][SCN] using GLC. J. Chem. Thermodyn. 41, 645–650 (2009)
Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-3-methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. B 112, 11100–11105 (2008)
Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-ethyl-3-methylimidazolium trifluoroacetate. J. Phys. Chem. B 111, 11984–11988 (2007)
Yan, P.-F., Yang, M., Liu, X.-M., Liu, Q.-S., Tan, Z.-C., Welz-Biermann, U.: Activity coefficients at infinite dilution of organic solutes in 1-ethyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate [EMIM][FAP] using gas–liquid chromatography. J. Chem. Eng. Data 55, 2444–2450 (2010)
Paduszynski, K., Domanska, U.: Limiting activity coefficients and gas–liquid partition coefficients of various solutes in piperidinium ionic liquids: measurements and LSER calculations. J. Phys. Chem. B 115, 8207–8215 (2011)
Domanska, U., Zawadzki, M.: Thermodynamic properties of the N-butylisoquinolinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 43, 989–995 (2011)
Wlazlo, M., Domanska, U.: Gamma infinity data for the separation of water-butan-1-ol mixtures using ionic liquids. Sep. Purif. Technol. 162, 162–170 (2016)
Marciniak, A., Wlazlo, M.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-(3-hydroxypropyl)pyridinium trifluorotris(perfluoroethyl)phosphate. J. Phys. Chem. B 114, 6990–6994 (2010)
Domanska, U., Redhi, G.G., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium trifluoromethanesulfonate using GLC. Fluid Phase Equilib. 278, 97–102 (2009)
Olivier, E., Letcher, T.M., Naidoo, P., Ramjugernath, D.: Activity coefficients at infinite dilution of organic solutes in the ionic liquid 1-octyl-3-methylimidazolium hexafluorophosphate using gas–liquid chromatography at T =(313.15, 323.15, and 333.15)K. J. Chem. Thermodyn. 42, 646–650 (2010)
Gwala, N.V., Deenadayalu, N., Tumba, K., Ramjugernath, D.: Activity coefficients at infinite dilution for solutes in the trioctylmethylammonium bis(trifluoromethylsulfonyl)imide ionic liquid using gas–liquid chromatography. J. Chem. Thermodyn. 42, 256–261 (2010)
Domanska, U., Marciniak, A.: Activity coefficients at infinite dilution measurements for organic solutes and water in the ionic liquid 4-methyl-N-butyl-pyridinium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 41, 1350–1355 (2009)
Domanska, U., Wlazlo, M.: Thermodynamics and limiting activity coefficients measurements for organic solutes and water in the ionic liquid 1-dodecyl-3-methylimidzolium bis(trifluoromethylsulfonyl)imide. J. Chem. Thermodyn. 103, 76–85 (2016)
Möllmann, C., Gmehling, J.: Measurement of activity coefficients at infinite dilution using gas−liquid chromatography. 5. Results for N-methylacetamide, N, N-dimethylacetamide, N, N-dibutylformamide, and sulfolane as stationary phases. J. Chem. Eng. Data 42, 35–40 (1997)
Acknowledgements
Igor Sedov acknowledges the Russian Federation President Grant MD-1444.2021.1.3.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Magsumov, T.I., Sedov, I.A. & Acree, W.E. Development of Predictive Expressions for Infinite Dilution Activity Coefficients, Molar Solubilities and Partition Coefficients for Solutes Dissolved in 2-Pyrrolidone Based on the Abraham Solvation Parameter Model. J Solution Chem 51, 975–991 (2022). https://doi.org/10.1007/s10953-021-01104-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-021-01104-4