Skip to main content
Log in

Studies on Amino Acid Type Protic Ionic Liquid Comprising N-2-Ethylhexylethylenediaminium Cation Coupled with the dl-Hexanoylalaninate Anion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

An acyl-amino acid type protic ionic liquid (PIL) composed of N-2-ethylhexylethylenediaminium ([HEtHex-en]+) coupled with dl-hexanoylalaninate ([Hexala]), forming dl-[HEtHex][Hexala], was newly synthesized. This PIL has chelate moieties on both the cationic and anionic sides. It is a room-temperature ionic liquid with a glass transition temperature of 237.55 K (− 35.6 °C) and is highly miscible with water (H2O, 90 wt.%) owing to its high polarity. The dynamic viscosity approximately follows the Arrhenius equation while the electrical conductivity slightly deviates from it in the temperature range 303.15–353.15 K. The Walden line of dl-[HEtHex][Hexala] in the same temperature range is found to be outside the ΔW = 1 region. dl-[HEtHex][Hexala] enables the encapsulation of transition metal ions, and the measurements with inductive coupled plasma emission have shown that the solubilities of CuCl2, CoCl2 and NiCl2 in dl-[HEtHex][Hexala] are 74.5, 65.2, and 17.6 mmol·kg−1, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Hua, E., Yasuda, H., Harada, M., Taguchi, E., Iida, M.: Formation of silver nanoparticles from ionic liquids comprising N-alkylethylenediamine: effects of dissolution modes of the silver(I) ions in the ionic liquids. Colloids Surf. A Physicochem. Eng. Asp. 522, 503–513 (2017)

    Article  Google Scholar 

  2. Dupont, J., De. Souza, R.F., Zuarez, P.A.Z.: Ionic liquid (molten salt) phase organometallic catalysis. Chem. Rev. 102, 3667–3692 (2002)

    Article  CAS  Google Scholar 

  3. Saravanamurugan, S., Kunov-Kruse, A.J., Fehrmann, R., Riisager, A.: Amine-functionalized amino acid-based ionic liquids as efficient and high-capacity absorbents for CO2. Chem. Sus. Chem. 7, 897–902 (2014)

    Article  CAS  Google Scholar 

  4. Niedermaier, I., Bahlmann, M., Papp, C., Kolbeck, C., Wei, W.: Carbon dioxide capture by an amine functionalized ionic liquid: fundamental differences of surface and bulk behavior. J. Am. Chem. Soc. 136, 436–441 (2014)

    Article  CAS  Google Scholar 

  5. Yasuda, T., Watanabe, M.: Protic ionic liquids: fuel cell applications. MRS Bull. 38, 560–566 (2013)

    Article  CAS  Google Scholar 

  6. Nakamoto, H., Watanabe, M.: Brønsted acid–base ionic liquids for fuel cell electrolytes. Chem. Commun. 24, 2539–2541 (2007)

    Article  Google Scholar 

  7. Ohira, K., Yoshida, K., Hayase, S., Itoh, T.: Amino acid ionic liquid as an efficient cosolvent of dimethyl sulfoxide to realize cellulose dissolution at room temperature. Chem. Lett. 41, 987–989 (2012)

    Article  CAS  Google Scholar 

  8. Bell, J.R., Luo, H., Dai, S.: Superbase-derived protic ionic liquid extractants for metal ion separation. Sep. Purif. Technol. 130, 147–150 (2014)

    Article  CAS  Google Scholar 

  9. Yao, M., Fan, M., Liang, Y., Zhou, F., Xia, Y.: Imidazoliun hexaflurophosphate ionic liquids as high temperature lubiricants for steel-steel contacts. Wear 268, 67–77 (2010)

    Article  CAS  Google Scholar 

  10. Maton, C., Vos, N.D., Stevens, C.V.: Ionic liquid thermal stabilities: decomposition mechanisms and analysis tools. Chem. Soc. Rev. 42, 5963–5977 (2013)

    Article  CAS  Google Scholar 

  11. Gathergood, N., Garcia, M.T., Scammells, P.J.: Biodegradable ionic liquids: Part I. Concept, preliminary targets and evaluation. Green Chem. 6, 166–175 (2004)

    Article  CAS  Google Scholar 

  12. Jordan, A., Gathergood, N.: Biodegradation of ionic liquids—a critical review. Chem. Soc. Rev. 44, 8200–8237 (2015)

    Article  CAS  Google Scholar 

  13. Wang, X.J., Chi, Y.L., Mu, T.C.: A review on the transport properties of ionic liquids. J. Mol. Liq. 193, 262–266 (2014)

    Article  CAS  Google Scholar 

  14. Liaw, H.J., Chen, C.C., Chen, Y.C., Chen, J.R., Huang, S.K., Liu, S.N.: Relationship between flash point of ionic liquids and their thermal decomposition. Green Chem. 14, 2001–2008 (2012)

    Article  CAS  Google Scholar 

  15. Pejakovi, V., Tomastik, C., Dörr, N., Kalin, M.: Influence of concentration and anion alkyl chain length on tribological properties of imidazolium sulfate ionic liquids as additives to glycerol in steel–steel contact lubrication. Tribol. Int. 97, 234–243 (2016)

    Article  Google Scholar 

  16. Ohno, H., Fukumoto, K.: Amino acid ionic liquids. Acc. Chem. Res. 40, 1122–1129 (2007)

    Article  CAS  Google Scholar 

  17. Fukumoto, K., Yoshizawa, M., Ohno, H.: Room temperature ionic liquids from 20 natural amino acids. J. Am. Chem. Soc. 127, 2398–2399 (2005)

    Article  CAS  Google Scholar 

  18. Takemura, S., Kawakami, S., Harada, M., Iida, M.: Solvation structure of a copper(II) ion in protic ionic liquids comprising N-hexylethylenediamine. Inorg. Chem. 53, 9667–9678 (2014)

    Article  CAS  Google Scholar 

  19. Nakayama, C., Harada, M., Iida, M.: Properties of protic ionic liquids comprised of N-alkyldiethylenetriamine and their complexation of copper(II) ions. Eur. J. Inorg. Chem. 31, 3744–3754 (2017)

    Article  Google Scholar 

  20. Zhang, J.M., Zhang, S.J., Dong, K., Zhang, Y.Q., Shen, Y.Q., Lu, X.M.: Supported absorption of CO2 by tetrabutylphosphonium amino acid ionic liquids. Chem. Eur. J. 12, 4021–4026 (2006)

    Article  CAS  Google Scholar 

  21. Zhan, Y.Q., Zhang, S.J., Lu, X.M., Zhou, Q., Fan, W., Zhang, X.P.: Dual amino-functionalised phosphonium ionic liquids for CO2 capture. Chem. Eur. J. 15, 3003–3011 (2009)

    Article  Google Scholar 

  22. Hua, E., Xu, Y., Zhao, H.: Properties of mono-protic ionic liquids composed of hexylammonium and hexylethylenediaminium cations with trifluoroacetate and bis(trifluoromethylsulfonyl) imide anions. J. Mol. Liq. 276, 379–384 (2019)

    Article  Google Scholar 

  23. Hua, E., Izutani, J., Gerille, N., Iida, M.: Aggregation of bis(N-octanoylaminocarboxylato) magnesium(II) complexes in water/organic solvents. Colloids Surf. A Physicochem. Eng. Asp. 392(1), 213–219 (2011)

    Article  Google Scholar 

  24. Naren, G., Masuda, R., Iida, M., Harada, M., Kurosu, H., Suzuki, T., Kimura, T.: Formation of molecular glasses and the aggregation in solutions for lanthanum(III), calcium(II), and yttrium(III) complexes of octanoyl-dl-alaninate. Dalton Trans. 13, 1698–1709 (2008)

    Article  Google Scholar 

  25. Naren, G., Yasuda, A., Iida, M., Harada, M., Suzuki, T., Kato, M.: Aggregation in methanol and formation of molecular glasses for europium(III) N-acylaminocarboxylates: effects of alkyl chain length and head group. Dalton Trans. 28, 5512–5522 (2009)

    Article  Google Scholar 

  26. Wu, T.Y., Su, S.G., Gung, S.T., Lin, M.W., Lin, Y.C., Ou-Yang, I., Sun, W., Lai, C.A.: Synthesis and characterization of protic ionic liquids containing cyclic amine cations and tetrafluoroborate anion. J. Iran. Chem. Soc. 8, 149–165 (2011)

    Article  CAS  Google Scholar 

  27. Hua, E., Wang, H.: Properties of protic ionic liquids composed of N-alkyl (= hexyl, octyl and 2-ethylhexyl) ethylenediaminum cations with trifluoromethanesulfonate and trifluoroacetate anion. J. Mol. Liq. 220, 649–656 (2016)

    Article  Google Scholar 

  28. Glasser, L.: Lattice and phase transition thermodynamics of ionic liquids. Thermochim. Acta 421, 87–93 (2004)

    Article  CAS  Google Scholar 

  29. Ghanem, O.B., Papaiconomou, N., Abdul Mutalib, M.I., Viboud, S., El-Harbawi, M., Uemura, Y., Gonfa, G., Azmi Bustam, M., Lévêque, J.-M.: Thermophysical properties and acute toxicity towards green algae and Vibrio fischeri of amino acid-based ionic liquids. J. Mol. Liq. 212, 352–359 (2015)

    Article  Google Scholar 

  30. Dong, Y., Shah, S.N., Pranesh, M., Prokkola, H., Kärkkäinen, J., Leveque, J.-M., Lassi, U.K.C.: Lethesh: Azepanium based acyl-amino acid protic ionic liquids: synthesis, thermophysical properties and COSMO-RS study. J. Mol. Liq. 264, 24–31 (2018)

    Article  CAS  Google Scholar 

  31. Kagimoto, J., Taguchi, S., Fukumoto, K., Ohno, H.: Hydrophobic and low-density amino acid ionic liquids. J. Mol. Liq. 153(2), 133–138 (2010)

    Article  CAS  Google Scholar 

  32. Arkhipova, E.A., Ivanov, A.S., Maslakov, K.I., Savilov, S.V., Lunin, V.V.: Effect of cation structure of tetraalkylammonium-and imidazolium-based ionic liquids on their conductivity. Electrochim. Acta 297, 842–849 (2019)

    Article  CAS  Google Scholar 

  33. Xu, W., Angell, C.A.: Solvent-free electrolytes with aqueous solution-like conductivities. Science 302, 422–425 (2003)

    Article  CAS  Google Scholar 

  34. Li, C.G., Hua, E.: Effect of water content on the physicochemical properties of PIL composed of 2-ethylhexylethylenediaminium cation and CF3SO3 anion. J. Henan Normal Univ. (Nat. Sci. Ed.) 47(2), 61–66 (2019)

    Google Scholar 

  35. Walden, P.: Uber organische losungs-und ionisierungsmittel. III. teil: innere reibung und deren zusammenhang mit dem leitvermogen. J. Phys. Chem. 55, 207–249 (1906)

    CAS  Google Scholar 

  36. Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden Plot. J. Chem. Eng. Data 55, 1784–1788 (2010)

    Article  CAS  Google Scholar 

  37. Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)

    Article  CAS  Google Scholar 

  38. Hua, E., Iida, M.: Protonation Properties, Applications and Effects: Properties of Protic Ionic Liquids Comprising N-Alkyl Polyamines (Chapter 3). Nova Science Publishers, Hauppauge (2019)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Key Scientific Research Projects in 2019 at North Minzu University (Project No. 2019 KJ13) and National Natural Science Foundation of China (21663018). We are also grateful to Prof. Masayasu Iida of Nara Women's University for the helpful discussion. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Er Hua or Gerile Naren.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 130 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, E., Liu, J. & Naren, G. Studies on Amino Acid Type Protic Ionic Liquid Comprising N-2-Ethylhexylethylenediaminium Cation Coupled with the dl-Hexanoylalaninate Anion. J Solution Chem 50, 941–953 (2021). https://doi.org/10.1007/s10953-021-01097-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01097-0

Keywords

Navigation