Skip to main content
Log in

Use of Partial Molal Enthalpy for Refining the Partition of Water Activity into Electrostatic and Nonelectrostatic Components

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

This paper describes a procedure to precisely decouple the electrostatic and the nonelectrostatic contributions to the water activity of an electrolyte solution, using the partial molal enthalpy of water in the electrolyte solution. This work is an extension of our previous work [Sahu et al. in Fluid Phase Equil. 460:57–68, 2018, Data in Brief 19:485–494, 2018], where a methodology to segregate the electrostatic and non-electrostatic contributions to the water activity was discussed and the constancy of the electrostatic contribution to the water activity was shown. However, in this paper, it is a noticeable point that even a 2% variation in the electrostatic contribution to the water activity leads to a very large deviation in the electrostatic contributions to the partial molal enthalpy of water. Therefore, due to the high sensitivity of the enthalpy to the variation of the water activity, the partial molal enthalpy of water is used for refinement of the method of partitioning the water activity into electrostatic and nonelectrostatic contributions and to provide the physical interpretation of the electrostatic and nonelectrostatic contribution to the partial molal enthalpy of water. This paper also describes the procedure to estimate the partial molal enthalpy of water from the water activity of the electrolyte solution. Microcalorimetr has been used to estimate the closed spaced points of partial molal enthalpies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Baranyai, Z., Brucher, E., Uggeri, F., Maiocchi, A., Toth, I., Andrasi, M., Gaspar, A., Zekany, L., Aime, S.: The role of equilibrium and kinetic properties in the dissociation of Gd[DTPA-bis-(methylamide)](Omniscan) at near to physiological conditions. Chem. Eur. J. 21, 4789–4799 (2015)

    Article  CAS  PubMed  Google Scholar 

  2. Königsberger, L.-C., Königsberger, E., Hefter, G., May, P.M.: Formation constants of copper(I) complexes with cysteine, penicillamine and glutathione: implications for copper speciation in the human eye. Dalton Trans. 44, 20413–20425 (2015)

    Article  PubMed  Google Scholar 

  3. Mistry, K.H., Hunter, H.A., Lienhard, V.J.H.: Effect of composition and nonideal solution behavior on desalination calculations for mixed electrolyte solutions with comparison to seawater. Desalination 318, 34–47 (2013)

    Article  CAS  Google Scholar 

  4. Qian, H.F., Wu, F., Zhang, F., Zhou, Z., Zhang, Z.: An accurate calculation model for Na+ concentration in seawater desalination solution. Desalination 313, 12–17 (2013)

    Article  CAS  Google Scholar 

  5. Qian, H.F., Zhou, Z., Zhang, L., Wu, F., Zhang, Q., Zhang, Z.: Thermodynamic analysis on the theoretical energy consumption of seawater desalination. Desalination 320, 73–79 (2013)

    Article  CAS  Google Scholar 

  6. Scott, S.L., Gunnarsson, I., Arnorsson, S., Stefansson, A.: Gas chemistry, boiling and phase segregation in a geothermal system, Hellisheidi, Iceland. Geochim. Cosmochim. Acta 124, 170–189 (2014)

    Article  CAS  Google Scholar 

  7. Sadegh, N., Stenby, E.H., Thomsen, K.: Thermodynamic modeling of hydrogen sulfide absorption by aqueous N-methyldiethanolamine using the extended UNIQUAC model. Fluid Phase Equilib. 392, 24–32 (2015)

    Article  CAS  Google Scholar 

  8. Hummel, W.: Solubility equilibria and geochemical modeling in the field of radioactive waste disposal. Pure Appl. Chem. 77, 631–641 (2005)

    Article  Google Scholar 

  9. Hummel, W.: Solubility of solids in radioactive waste repositories. In: Letcher, T.M. (ed.) Development and Applications in Solubility, p. 323. RSC Publishing, Cambridge (2007)

    Chapter  Google Scholar 

  10. Hummel, W.: Radioactive contaminants in the subsurface: the influence of complexing ligands on trace metal speciation. Monat. Chem. 139, 459–480 (2008)

    Article  CAS  Google Scholar 

  11. Grive, M., Duro, L., Colas, E., Giffaut, E.: Thermodynamic data selection applied to radionuclides and chemotoxic elements: an overview of the ThermoChimie - TDB. Appl. Geochem. 55, 85–94 (2015)

    Article  CAS  Google Scholar 

  12. Spycher, N., Pruess, K., Ennis-King, J.: CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100 °C and up to 600 bar. Geochim. Cosmochim. Acta 67, 3015–3031 (2003)

    Article  CAS  Google Scholar 

  13. Fujita, Y., Barnes, J.C., Eslamimanesh, A., Lencka, M.M., Anderko, A., Riman, R.E., Navrotsky, A.: Effects of simulated rare earth recycling wastewaters on biological nitrification. Environ. Sci. Technol. 49, 9460–9468 (2015)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hedberg, Y.S., Wallinder, I.O.: Metal release from stainless steel in biological environments: a review. Biointerphases 11, 018901–018917 (2016)

    Article  Google Scholar 

  15. Muller, J., Abdelouas, A., Ribet, S., Grambow, B.: Sorption of selenite in a multi-component system using the ″dialysis membrane″ method. Appl. Geochem. 27, 2524–2532 (2012)

    Article  CAS  Google Scholar 

  16. Weare, J.H., Dobbs, C., Thompson, C.: The prediction of scale production from process, brines: chemical models vs factorial design: a progress report. AIChE Symp. Ser. 298, 127 (1994)

    CAS  Google Scholar 

  17. Duan, Z., Moller, N., DeRocher, T., Weare, J.H.: Prediction of boiling, scaling and formation conditions in geothermal reservoirs using computer programs TEQUIL and GEOFLUIDS. Geothermics 25, 663–678 (1996)

    Article  CAS  Google Scholar 

  18. Moldoveanu, G.A., Papangelakis, V.G.: Strategies for calcium sulphate scale control in hydrometallurgical processes at 80 °C. Hydrometallurgy 157, 133–139 (2015)

    Article  CAS  Google Scholar 

  19. Rubisov, D.H., Papangelakis, V.G.: The effect of acidity ″at temperature″ on the morphology of precipitates and scale during sulfuric acid pressure leaching of laterites. CIM Bull. 93, 131–137 (2000)

    CAS  Google Scholar 

  20. Sridhar, N., Dunn, D.S., Anderko, A., Lencka, M.M., Schutt, H.U.: Effects of water and gas compositions on the internal corrosion of gas pipelines-modeling and experimental studies. Corrosion 57, 221–235 (2001)

    Article  CAS  Google Scholar 

  21. Bockmon, E.E., Dickson, A.G.: An inter-laboratory comparison assessing the quality of seawater carbon dioxide measurements. Mar. Chem. 171, 36–43 (2015)

    Article  CAS  Google Scholar 

  22. Anes, B., Bettencourt da Silva, R.J.N., Martins, H.F.P., Oliveira, C.S., Camoes, M.F.: Compatibility of activity coefficients estimated experimentally and by Pitzer equations for the assessment of seawater pH. Accredit. Qual. Assur. 21, 1–7 (2016)

    Article  CAS  Google Scholar 

  23. Dickson, A.G., Camoes, M.F., Spitzer, P., Fisicaro, P., Stoica, D., Pawlowicz, R., Feistel, R.: Metrological challenges for measurements of key climatological observables. Part 3: seawater pH. Metrologia 53, R26–R39 (2016)

    Article  CAS  Google Scholar 

  24. Debye, P., Hückel, E.: The theory of electrolytes. I. Lowering of freezing point and related phenomena. Phys. Z. 24, 185 (1923)

    CAS  Google Scholar 

  25. March, N.H., Tosi, M.P.: Coulomb liquids. Academic, London (1984)

    Google Scholar 

  26. Guggenheim, E.A.: Mixtures. Oxford University Press, London (1952)

    Google Scholar 

  27. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChe J. 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  28. Zemaitis, J.F., Jr., Clark, D.M., Rafal, M., Scrivner, N.C.: Handbook of Aqueous Electrolyte Thermodynamics. DIPPR, New York (1986)

    Book  Google Scholar 

  29. Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry. OECD Publications, Paris (1997)

    Google Scholar 

  30. Kirkwood, J.G., Poirier, J.C.: The statistical mechanical basis of the Debye–Hückel theory of strong electrolytes. J. Phys. Chem. 58, 591–596 (1954)

    Article  CAS  Google Scholar 

  31. Weerasinghe, S., Smith, P.E.: A Kirkwood-Buff derived force field for sodium chloride in water. J. Chem. Phys. 119, 11342–11349 (2003)

    Article  CAS  Google Scholar 

  32. Hess, B., Holm, C., van der Vegt, N.: Osmotic coefficients of atomistic NaCl(aq) force fields. J. Chem. Phys. 124, 164509–164518 (2006)

    Article  PubMed  Google Scholar 

  33. Glueckauf, E.: The influence of ionic hydration on activity coefficients in concentrated electrolyte solutions. Trans. Faraday Soc. 51, 1235–1244 (1955)

    Article  CAS  Google Scholar 

  34. Frank, H.S., Thompson, P.T.: Fluctuations and the limit of validity of the Debye–Hückel theory. J. Chem. Phys. 31, 1086–1095 (1959)

    Article  CAS  Google Scholar 

  35. Rasaiah, J.C.: A view of electrolyte solutions. J. Solution Chem. 2, 301–338 (1973)

    Article  CAS  Google Scholar 

  36. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  37. Kontogeorgis, G.M., Folas, G.K.: Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories. Wiley, Chichester (2010)

    Book  Google Scholar 

  38. Newton, G., Randall, M., Pitzer, K.S., Lewis, L. B.: Thermodynamics, 2nd edn (Edition Revised by Pitzer, K.S., and Lewis, L. B). McGraw–Hill, New York (1961)

  39. Ciavatta, L.: The specific interaction theory in equilibrium analysis. Some empirical rules for estimating interaction coefficients of metal ion complexes. Annal. Chim. (Roma) 80, 255–263 (1990)

    CAS  Google Scholar 

  40. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  41. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  42. Bollas, G.M., Chen, C.C., Barton, P.I.: Refined electrolyte-NRTL model: Activity coefficient expressions for application to multielectrolyte systems. AIChE J. 54, 1608–1624 (2008)

    Article  CAS  Google Scholar 

  43. Chen, C.C., Mathias, P.M., Orbey, H.: Use of hydration and dissociation chemistries with the electrolyte-NRTL model. AIChE J. 45, 1576–1586 (1999)

    Article  CAS  Google Scholar 

  44. Chen, C.C., Song, Y.: Generalized electrolyte-NRTL model for mixed-solvent electrolyte systems. AIChE J. 50, 1928–1941 (2004)

    Article  CAS  Google Scholar 

  45. Chen, C.C., Britt, H.I., Boston, J.F., Evans, L.B.: Local composition model for excess Gibbs energy of electrolyte systems. AIChE J. 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  46. Chen, C.C., Evans, L.B.: Local composition model for excess Gibbs energy of aqueous electrolyte systems. AIChE J. 32, 444–454 (1986)

    Article  CAS  Google Scholar 

  47. Liu, Y., Harvey, A.H., Prausnitz, J.M.: Thermodynamics of concentrated electrolyte solutions. Chem. Eng. Commun. 77, 43–66 (1989)

    Article  CAS  Google Scholar 

  48. Song, W., Larson, M.A.: Activity coefficient model of concentrated electrolyte solutions. AIChE J. 36, 1896–1900 (1990)

    Article  CAS  Google Scholar 

  49. Kolker, A.R.: Thermodynamics modeling of concentrated aqueous electrolyte and nonaqueous systems. Fluid Phase Equilib. 69, 155–169 (1991)

    Article  CAS  Google Scholar 

  50. Kolker, A., Pablo, J.J.D.: Thermodynamic modeling of concentrated aqueous electrolyte and nonelectrolyte solutions. AIChE J. 41, 1563–1571 (1995)

    Article  CAS  Google Scholar 

  51. Fredenslund, A., Jones, R.L., Prausnitz, J.M.: Group-contribution estimation of activity coefficients in nonideal liquid mixtures. AIChE J. 21, 1086–1099 (1975)

    Article  CAS  Google Scholar 

  52. Nicolaisen, H., Rasmussen, P., Sorensen, J.M.: Correlation and prediction of mineral solubilities in the reciprocal salt system (Na+, K+) (Cl, \({\text{SO}}^{2-}_{4}\))–H2O at 0–100°C. Chem. Eng. Sci. 48, 3149–3158 (1993)

    Article  CAS  Google Scholar 

  53. Thomsen, K.: Modeling electrolyte solutions with the extended universal quasichemical (uniquac) model. Pure Appl. Chem. 77, 531–542 (2005)

    Article  CAS  Google Scholar 

  54. Thomsen, K., Rasmussen, P., Gani, R.: Correlation and prediction of thermal properties and phase behavior for a class of electrolyte systems. Chem. Eng. Sci. 51, 3675–3683 (1996)

    Article  CAS  Google Scholar 

  55. Lu, X.H., Maurer, G.: Model for describing activity coefficients in mixed electrolyte solutions. AIChE J. 39, 1527–1538 (1993)

    Article  CAS  Google Scholar 

  56. Molina, J.J., Dufrêche, J.-F., Salanne, M., Bernard, O., Jardat, M., Turq, P.: Models of electrolyte solutions from molecular descriptions: the example of NaCl solutions. Phys. Rev. E 80, 065103–065104 (2009)

    Article  Google Scholar 

  57. Fennell, C.J., Bizjak, A., Vlachy, V., Dill, K.A.: Ion pairing in molecular simulations of aqueous alkali halide solutions. J. Phys. Chem. B 113, 6782–6791 (2009)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kalcher, I., Dzubiella, J.: Structure–thermodynamics relation of electrolyte solutions. J. Chem. Phys. 130, 134507–134512 (2009)

    Article  PubMed  Google Scholar 

  59. Mirzoev, A., Lyubartsev, A.P.: Effective solvent mediated potentials of Na+ and Cl ions in aqueous solution: temperature dependence. Phys. Chem. Chem. Phys. 13, 5722–5727 (2011)

    Article  CAS  PubMed  Google Scholar 

  60. Hingerl, F.F., Wagner, T., Kulik, D.A., Thomsen, K., Driesner, T.: A new aqueous activity model for geothermal brines in the system Na–K–Ca–Mg–H–Cl–SO4–H2O from 25 to 300°C. Chem. Geol. 381, 78–93 (2014)

    Article  CAS  Google Scholar 

  61. Parvaneh, K., Haghbakhsh, R., Shariati, A., Peters, C.J.: A crossover UNIQUAC model for critical and noncritical LLE calculations. AIChE J. 61, 3094–3103 (2015)

    Article  CAS  Google Scholar 

  62. Gebreyohannes, S., Neely, B.J., Gasem, K.A.M.: Generalized interaction parameter for the modified nonrandom two-liquid (NRTL) activity coefficient model. Ind. Eng. Chem. Res. 53, 20247–20257 (2014)

    Article  CAS  Google Scholar 

  63. Sahu, J., Juvekar, V.A.: Development of a rationale for decoupling osmotic coefficient of electrolytes into electrostatic and nonelectrostatic contributions. Fluid Phase Equilib. 460, 57–68 (2018)

    Article  CAS  Google Scholar 

  64. Mohite, L.V., Juvekar, V.A.: Quantification of thermodynamics of aqueous solutions of poly(ethylene glycols): role of calorimetry. Fluid Phase Equilib. 278, 41–53 (2009)

    Article  CAS  Google Scholar 

  65. Mohite, L.V., Juvekar, V.A., Sahu, J.: Quantification of polymer−surface interaction using microcalorimetry. Ind. Eng. Chem. Res. 58, 7495–7510 (2019)

    Article  CAS  Google Scholar 

  66. Robinson, A.L.: The integral heats of dilution and the relative partial molal heat contents of aqueous sodium chloride solutions at 25 °C. J. Am. Chem. Soc. 54, 1311–1318 (1932)

    Article  CAS  Google Scholar 

  67. Robinson, A.L., Gulbransen, E.A.: Integral heats of dilution, relative partial molal heat contents and heat capacities of dilute aqueous sodium chloride solutions. J. Am. Chem. Soc. 56, 2637–2641 (1934)

    Article  Google Scholar 

  68. Young, T.F., Vogel, O.G.: The relative heat contents of the constituents of aqueous sodium chloride solutions. J. Am. Chem. Soc. 54, 3030–3040 (1932)

    Article  CAS  Google Scholar 

  69. Fortier, J.L., Leduc, P.A., Picker, P., Desnoyers, J.E.: Enthalpies of dilution of electrolyte solutions by flow microcalorimetry. J. Solution Chem. 2, 467–475 (1973)

    Article  CAS  Google Scholar 

  70. Fortier, J.L., Leduc, P.A., Desnoyers, J.E.: Thermodynamic properties of alkyl halides. II. Enthalpies of dilution and heat capacities in water at 25 °C. J. Solution Chem. 3, 323–349 (1974)

    Article  CAS  Google Scholar 

  71. Vaslow, F.: Salt-induced critical-type transitions in aqueous solutions. Heats of dilution of the lithium and sodium halides. J. Phys. Chem. 75, 3317–3321 (1971)

    Article  CAS  Google Scholar 

  72. Young, T.F., Machin, J.S.: Heat content and heat capacity of aqueous sodium chloride solutions. J. Am. Chem. Soc. 58, 2254–2260 (1936)

    Article  CAS  Google Scholar 

  73. Messikomer, E.E., Wood, R.H.: The enthalpy of dilution of aqueous sodium chloride at 298.15 to 373.15K, measured with a flow calorimeter. J. Chem. Thermodyn. 7, 119–130 (1975)

    Article  CAS  Google Scholar 

  74. Gibbard, H.F., Scatchard, J.G., Rocesseau, R.A., Creek, J.L.: Liquid–vapor equilibrium of aqueous sodium chloride, from 298 to 373K and from 1 to 6 mol·kg−1, and related properties. J. Chem. Eng. Data 19, 281–288 (1974)

    Article  CAS  Google Scholar 

  75. Stokes, R.H., Robinson, R.A.: Solvation equilibria in very concentrated electrolyte solutions. J. Solution Chem. 2, 173–191 (1973)

    Article  CAS  Google Scholar 

  76. Booth, F.: The dielectric constant of water and the saturation effect. J. Chem. Phys. 19, 391–394 (1951)

    Article  CAS  Google Scholar 

  77. Desnoyers, J.E., Verrall, R.E., Conway, B.E.: Electrostriction in aqueous solutions of electrolytes. J. Chem. Phys. 43, 243–250 (1965)

    Article  CAS  Google Scholar 

  78. Grindley, T., Lind, J.E., Jr.: PVT properties of water and mercury. J. Chem. Phys. 54, 3983–3989 (1971)

    Article  CAS  Google Scholar 

  79. Sahu, J., Juvekar, V.A.: Data on primary hydration characteristics of aqueous electrolytes. Data Brief 19, 485–494 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyoti Sahu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, J., Juvekar, V.A. Use of Partial Molal Enthalpy for Refining the Partition of Water Activity into Electrostatic and Nonelectrostatic Components. J Solution Chem 50, 752–770 (2021). https://doi.org/10.1007/s10953-021-01088-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01088-1

Keywords

Navigation