Skip to main content
Log in

Solubility, Dissolution Thermodynamics and Preferential Solvation of Meloxicam in (Methanol + Water) Mixtures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Solubility of meloxicam in {methanol + water} mixtures from 293.15 to 313.15 K has been determined and correlated by means of the Jouyban–Acree model. By using the van’t Hoff and Gibbs equations the respective apparent thermodynamic quantities for the dissolution and mixing processes, namely Gibbs energy, enthalpy, and entropy, were calculated. A non-linear enthalpy–entropy relationship was observed in the plot of enthalpy vs. Gibbs energy exhibiting negative but variable slopes in the composition region 0.00 < x1 < 0.60 and variable negative and positive slopes in the other mixtures. Based on the inverse Kirkwood–Buff integrals it follows that meloxicam is preferentially solvated by water molecules in water-rich mixtures but preferentially solvated by methanol molecules in mixtures 0.31 < x1 < 1.00.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Budavari, S., O’Neil, M.J., Smith, A., Heckelman, P.E., Obenchain, J.R., Jr., Gallipeau, J.A.R., D’Arecea, M.A.: The Merck Index: An Encyclopedia of Chemicals, Drugs, and Biologicals, 13th edn. Merck & Co., Inc., Whitehouse Station (2001)

    Google Scholar 

  2. Sweetman, S.C. (ed.): Martindale: The Complete Drug Reference, 36th edn. Pharmaceutical Press, London (2009)

    Google Scholar 

  3. Engelhardt, G., Homma, D., Schlegel, K., Utzmann, R., Schnitzler, C.: Anti-inflammatory, analgesic, antipyretic and related properties of meloxicam, a new non-steroidal anti-inflammatory agent with favourable gastrointestinal tolerance. Inflamm. Res. 44, 423–433 (1995)

    CAS  PubMed  Google Scholar 

  4. Brooks, P.M., Day, R.O.: Non steroidal anti-inflammatory drugs—differences and similarities. N. Engl. J. Med. 324, 1716–1725 (1991)

    CAS  PubMed  Google Scholar 

  5. Türck, D., Roth, W., Busch, U.: A review of the clinical pharmacokinetics of meloxicam. Br. J. Rheumatol. 35, 13–16 (1996)

    PubMed  Google Scholar 

  6. Tinjacá, D.A., Martínez, F., Almanza, O.A., Jouyban, A., Acree, W.E., Jr.: Solubility of meloxicam in aqueous binary mixtures of formamide, N-methylformamide and N, N-dimethylformamide: determination, correlation, thermodynamics and preferential solvation. J. Chem. Thermodyn. 154, 106332 (2021)

    Google Scholar 

  7. Tinjacá, D.A., Martínez, F., Almanza, O.A., Jouyban, A., Acree, W.E., Jr.: Solubility of meloxicam in (Carbitol® + water) mixtures: determination, correlation, dissolution thermodynamics and preferential solvation. J. Mol. Liq. 324, 114671 (2021)

    Google Scholar 

  8. Tinjacá, D.A., Martínez, F., Almanza, O.A., Jouyban, A., Acree, W.E., Jr.: Dissolution thermodynamics and preferential solvation of meloxicam in (acetonitrile + water) mixtures. Phys. Chem. Liq. (2020). https://doi.org/10.1080/00319104.2020.1808658

    Article  Google Scholar 

  9. Zarzycki, P., Wòodarczyk, E., Lou, D.-W., Kiyokatsu, J.K.: Evaluation of methanol–water and acetonitrile–water binary mixtures as eluents for temperature-dependent inclusion chromatography. Anal. Sci. 22, 453–456 (2006)

    CAS  PubMed  Google Scholar 

  10. Barzegar-Jalali, M., Rahimpour, E., Martinez, F., Jouyban, A.: Generally trained models to predict drug solubility in methanol + water mixtures. J. Mol. Liq. 264, 631–644 (2018)

    CAS  Google Scholar 

  11. Yao, G., Yao, Q., Xia, Z., Li, Z.: Solubility determination and correlation for o-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from T = (283.15–318.15) K. J. Chem. Thermodyn. 105, 179–186 (2017)

    CAS  Google Scholar 

  12. Shao, D., Yang, Z., Zhou, G., Chen, J., Zheng, S., Lv, X., Li, R.: Improving the solubility of acipimox by cosolvents and the study of thermodynamic properties on solvation process. J. Mol. Liq. 262, 389–395 (2018)

    CAS  Google Scholar 

  13. Zhang, Y., Guo, X., Tang, P., Xu, J.: Solubility of 2,5-furandicarboxylic acid in eight pure solvents and two binary solvent systems at 313.15–363.15 K. J. Chem. Eng. Data 63, 1316–1324 (2018)

    CAS  Google Scholar 

  14. Lian, P., Zhao, H., Wang, J., Chen, L., Xiang, Y., Ren, Q.: Determination and correlation solubility of m-phenylenediamine in (methanol, ethanol, acetonitrile and water) and their binary solvents from 278.15 K to 313.15 K. Chin. J. Chem. Eng. 27, 1149–1158 (2019)

    CAS  Google Scholar 

  15. Li, X., He, Y., Xu, Y., Zhang, X., Zheng, M., Zhao, H.: 5-Nitrosalicylaldehyde in aqueous co-solvent mixtures of methanol, ethanol, isopropanol and acetonitrile: solubility determination, solvent effect and preferential solvation analysis. J. Chem. Thermodyn. 142, 106014 (2020)

    CAS  Google Scholar 

  16. Zhao, X., Farajtabar, A., Han, G., Zhao, H.: Griseofulvin dissolved in binary aqueous co-solvent mixtures of N, N-dimethylformamide, methanol, ethanol, acetonitrile and N-methylpyrrolidone: solubility determination and thermodynamic studies. J. Chem. Thermodyn. 151, 106250 (2020)

    CAS  Google Scholar 

  17. Li, K., Forciniti, D.: Solubility of lanosterol in organic solvents and in water–alcohol mixtures at 101.8 kPa. J. Chem. Eng. Data 65, 436–445 (2020)

    CAS  Google Scholar 

  18. Rubino, J.T.: Cosolvents and cosolvency. In: Swarbrick, J.C., Boylan, J. (eds.) Encyclopedia of Pharmaceutical Technology, vol. 3, pp. 375–398. Marcel Dekker, New York (1988)

    Google Scholar 

  19. Martin, A., Bustamante, P., Chun, A.H.C.: Physical Chemical Principles in the Pharmaceutical Sciences, 4th edn. Lea and Febiger, Philadelphia (1993)

    Google Scholar 

  20. Yalkowsky, S.H.: Solubility and Solubilization in Aqueous Media. American Chemical Society and Oxford University Press, New York (1999)

    Google Scholar 

  21. Jouyban, A.: Handbook of Solubility Data for Pharmaceuticals. CRC Press, Boca Raton (2010)

    Google Scholar 

  22. Higuchi, T., Connors, K.A.: Phase solubility techniques. Adv. Anal. Chem. Instrum. 4, 117–212 (1965)

    CAS  Google Scholar 

  23. Kratky, O., Leopold, H., Stabinger, H.: DMA45 Calculating Digital Density Meter, Instruction Manual. Anton Paar K.G., Graz (1980)

    Google Scholar 

  24. Delgado, D.R., Holguin, A.R., Almanza, O.A., Martinez, F., Marcus, Y.: Solubility and preferential solvation of meloxicam in ethanol + water mixtures. Fluid Phase Equilib. 305, 88–95 (2011)

    CAS  Google Scholar 

  25. Sathesh-Babu, P.R., Subrahmanyam, C.V.S., Thimmasetty, J., Manavalan, R., Valliappan, K.: Extended Hansen’s solubility approach: meloxicam in individual solvents. Pak. J. Pharm. Sci. 20, 311–316 (2007)

    Google Scholar 

  26. Delgado, D.R., Jouyban, A., Martinez, F.: Solubility and preferential solvation of meloxicam in methanol + water mixtures at 298.15 K. J. Mol. Liq. 197, 368–373 (2014)

    CAS  Google Scholar 

  27. Seedher, N., Bhatia, S.: Solubility enhancement of Cox-2 inhibitors using various solvent systems. AAPS PharmSciTech 4, 36–44 (2003)

    PubMed Central  Google Scholar 

  28. Castro, G.T., Filippa, M.A., Sancho, M.I., Gasull, E.I., Almandoz, M.C.: Solvent effect on the solubility and absorption spectra of meloxicam: experimental and theoretical calculations. Phys. Chem. Liq. 58, 337–348 (2020)

    CAS  Google Scholar 

  29. Barton, A.F.M.: Handbook of Solubility Parameters and Other Cohesion Parameters, 2nd edn. CRC Press LLC, Boca Raton (1991)

    Google Scholar 

  30. Marcus, Y.: The Properties of Solvents. Wiley, Chichester (1998)

    Google Scholar 

  31. Connors, K.A.: Thermodynamics of Pharmaceutical Systems: An Introduction for Students of Pharmacy. Wiley-Interscience, Hoboken (2002)

    Google Scholar 

  32. Fedors, R.F.: A method for estimating both the solubility parameters and molar volumes of liquids. Polym. Eng. Sci. 14, 147–154 (1974)

    CAS  Google Scholar 

  33. Freitas, J.T.J., Santos-Viana, O.M.M., Bonfilio, R., Doriguetto, A.C., Benjamim de Araújo, M.: Analysis of polymorphic contamination in meloxicam raw materials and its effects on the physicochemical quality of drug product. Eur. J. Pharm. Sci. 109, 347–358 (2017)

    Google Scholar 

  34. Banerjee, R., Sarkar, M.: Spectroscopic studies of microenvironment dictated structural forms of piroxicam and meloxicam. J. Lumin. 99, 255–263 (2002)

    CAS  Google Scholar 

  35. Luger, P., Daneck, K., Engel, W., Trummlitz, G., Wagner, K.: Structure and physicochemical properties of meloxicam, a new NSAID. Eur. J. Pharm. Sci. 4, 175–187 (1996)

    CAS  Google Scholar 

  36. Wu, X.Q., Tang, P.X., Li, S.S., Zhang, L.L., Li, H.: X-ray powder diffraction data for meloxicam, C14H13N3O4S2. Powder Diffr. 29, 196–198 (2014)

    CAS  Google Scholar 

  37. Noolkar, S.B., Jadhav, N.R., Bhende, S.A., Killedar, S.G.: Solid-state characterization and dissolution properties of meloxicam–moringa coagulant–PVP ternary solid dispersions. AAPS PharmSciTech 14, 569–577 (2013)

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Sirisolla, J.: Solubility enhancement of meloxicam by liquisolid technique and its characterization. Int. J. Pharm. Sci. Res. 6, 835–840 (2015)

    CAS  Google Scholar 

  39. Alnaief, M., Obaidat, R., Mashaqbeh, H.: Loading and evaluation of meloxicam and atorvastatin in carrageenan microspherical aerogels particles. J. Appl. Pharm. Sci. 9, 83–88 (2019)

    CAS  Google Scholar 

  40. Kristl, A., Vesnaver, G.: Thermodynamic investigation of the effect of octanol–water mutual miscibility on the partitioning and solubility of some guanine derivatives. J. Chem. Soc. Faraday Trans. 91, 995–998 (1995)

    CAS  Google Scholar 

  41. Jouyban-Gharamaleki, A., Valaee, L., Barzegar-Jalali, M., Clark, B.J., Acree, W.E., Jr.: Comparison of various cosolvency models for calculating solute solubility in water–cosolvent mixtures. Int. J. Pharm. 177, 93–101 (1999)

    CAS  PubMed  Google Scholar 

  42. Jouyban, A.: Review of the cosolvency models for predicting solubility of drugs in water–cosolvent mixtures. J. Pharm. Pharm. Sci. 11, 32–57 (2008)

    CAS  PubMed  Google Scholar 

  43. Jouyban, A.: Review of the cosolvency models for predicting drug solubility in solvent mixtures: an update. J. Pharm. Pharm. Sci. 22, 466–485 (2019)

    CAS  PubMed  Google Scholar 

  44. Jouyban, A., Acree, W.E., Jr.: Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J. Mol. Liq. 256, 541–547 (2018)

    CAS  Google Scholar 

  45. Dadmand, S., Kamari, F., Acree, W.E., Jr., Jouyban, A.: Solubility prediction of drugs in binary solvent mixtures at various temperatures using a minimum number of experimental data points. AAPS PharmSciTech 20, 10 (2019)

    Google Scholar 

  46. Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 1. Some fundamental statistical problems associated with the analysis of van’t Hoff and Arrhenius data. J. Phys. Chem. 80, 2335–2341 (1976)

    CAS  Google Scholar 

  47. Krug, R.R., Hunter, W.G., Grieger, R.A.: Enthalpy–entropy compensation. 2. Separation of the chemical from the statistical effect. J. Phys. Chem. 80, 2341–2351 (1976)

    CAS  Google Scholar 

  48. Perlovich, G.L., Kurkov, S.V., Kinchin, A.N., Bauer-Brandl, A.: Thermodynamics of solutions III: comparison of the solvation of (+)-naproxen with other NSAIDs. Eur. J. Pharm. Biopharm. 57, 411–420 (2004)

    CAS  PubMed  Google Scholar 

  49. Delgado, D.R., Almanza, O.A., Martínez, F., Peña, M.A., Jouyban, A., Acree, W.E., Jr.: Solution thermodynamics and preferential solvation of sulfamethazine in (methanol + water) mixtures. J. Chem. Thermodyn. 97, 264–276 (2016)

    CAS  Google Scholar 

  50. Jouyban, K., Agha, E.M.H., Hemmati, S., Martinez, F., Kuentz, M., Jouyban, A.: Solubility of 5-aminosalicylic acid in N-methyl-2-pyrrolidone + water mixtures at various temperatures. J. Mol. Liq. 310, 113143 (2020)

    CAS  Google Scholar 

  51. Romero, S., Reillo, A., Escalera, B., Bustamante, P.: The behaviour of paracetamol in mixtures of aprotic and amphiprotic–aprotic solvents. Relationship of solubility curves to specific and nonspecific interactions. Chem. Pharm. Bull. (Tokyo) 44, 1061–1066 (1996)

    CAS  Google Scholar 

  52. Henao, A., Johnston, A.J., Guàrdia, E., McLain, S.E., Pardo, L.C.: On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility. Phys. Chem. Chem. Phys. 18, 23006–23016 (2016)

    CAS  PubMed  Google Scholar 

  53. Graziano, G.: Comment on “On the positional and orientational order of water and methanol around indole: a study on the microscopic origin of solubility” Phys. Chem. Chem. Phys. 2016, 18, 23006. Phys. Chem. Chem. Phys. 20, 2113–2115 (2018)

    CAS  PubMed  Google Scholar 

  54. Bustamante, P., Romero, S., Peña, A., Escalera, B., Reillo, A.: Nonlinear enthalpy–entropy compensation for the solubility of drugs in solvent mixtures: paracetamol, acetanilide and nalidixic acid in dioxane–water. J. Pharm. Sci. 87, 1590–1596 (1998)

    CAS  PubMed  Google Scholar 

  55. Martínez, F., Peña, M.A., Bustamante, P.: Thermodynamic analysis and enthalpy–entropy compensation for the solubility of indomethacin in aqueous and non-aqueous mixtures. Fluid Phase Equilib. 308, 98–106 (2011)

    Google Scholar 

  56. Osorio, I.P., Martínez, F., Delgado, D.R., Jouyban, A., Acree, W.E., Jr.: Solubility of sulfacetamide in aqueous propylene glycol mixtures: measurement, correlation, dissolution thermodynamics, preferential solvation and solute volumetric contribution at saturation. J. Mol. Liq. 297, 111889 (2020)

    CAS  Google Scholar 

  57. Tomlinson, E.: Enthalpy–entropy compensation analysis of pharmaceutical, biochemical and biological systems. Int. J. Pharm. 13, 115–144 (1983)

    CAS  Google Scholar 

  58. Leffler, J.E., Grunwald, E.: Rates and Equilibria of Organic Reactions: As Treated by Statistical, Thermodynamic and Extra Thermodynamic Methods. Dover Publications, Inc., New York (1989)

    Google Scholar 

  59. Marcus, Y.: On the preferential solvation of drugs and PAHs in binary solvent mixtures. J. Mol. Liq. 140, 61–67 (2008)

    CAS  Google Scholar 

  60. Marcus, Y.: Preferential solvation of ibuprofen and naproxen in aqueous 1,2-propanediol. Acta Chim. Slov. 56, 40–44 (2009)

    CAS  Google Scholar 

  61. Delgado, D.R., Martínez, F.: Solution thermodynamics and preferential solvation of sulfamerazine in some methanol + water mixtures. J. Solution Chem. 44, 360–377 (2015)

    CAS  Google Scholar 

  62. Marcus, Y.: Preferential solvation of drugs in binary solvent mixtures. Pharm. Anal. Acta 8, 1000537 (2017)

    Google Scholar 

  63. Jiménez, D.M., Cárdenas, Z.J., Delgado, D.R., Martínez, F., Jouyban, A.: Preferential solvation of methocarbamol in aqueous binary cosolvent mixtures at 298.15 K. Phys. Chem. Liq. 52, 726–737 (2014)

    Google Scholar 

  64. Ben-Naim, A.: Preferential solvation in two- and in three-component systems. Pure Appl. Chem. 62, 25–34 (1990)

    CAS  Google Scholar 

  65. Marcus, Y.: Solubility and solvation in mixed solvent systems. Pure Appl. Chem. 62, 2069–2076 (1990)

    CAS  Google Scholar 

  66. Acree, W.E., Jr.: IUPAC-NIST Solubility Data Series. 102. Solubility of nonsteroidal anti-inflammatory drugs (NSAIDs) in neat organic solvents and organic solvent mixtures. J. Phys. Chem. Ref. Data 43, 023102 (2014)

    Google Scholar 

Download references

Acknowledgements

We thank the Departments of Pharmacy and Physics of the Universidad Nacional de Colombia for facilitating the equipment and laboratories used. Financial support of Colciencias is also highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fleming Martínez.

Ethics declarations

Conflict of interest

The authors claim that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tinjacá, D.A., Martínez, F., Almanza, O.A. et al. Solubility, Dissolution Thermodynamics and Preferential Solvation of Meloxicam in (Methanol + Water) Mixtures. J Solution Chem 50, 667–689 (2021). https://doi.org/10.1007/s10953-021-01084-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01084-5

Keywords

Navigation