Skip to main content
Log in

Influence of the Alkyl Chain Length on the Low Temperature Phase Transitions of Imidazolium Based Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effects induced by alkyl chain length on the thermal phase behavior for a series of imidazolium based ionic liquids (ILs) containing the anion bis(trifluoromethanesulfonyl)imide (TFSI) were investigated by infrared spectroscopy combined with density functional theory (DFT) calculations. In agreement with previous results on pyrrolidinium and ammonium based ionic liquids sharing the TFSI anion, our study shows that with increasing the length of the alky chain only the less stable cis-TFSI is retained in the solid state, while for shorter chain the trans-TFSI predominates in the crystalline phase. Also, we examined the remarkable effect on the packing efficiency due to the addition of 2-hydroxyethyl group on the imidazolium cation ring, reporting that the absence of crystallization is observed in correspondence with the presence of both the conformers of TFSI in the whole temperature range (150–325 K). Moreover, a detailed study of 1-ethyl-2,3-dimethylimidazolium-TFSI (EDMIM-TFSI) reveals the existence of cation rotational isomerism. In the liquid phase both planar (P) and non-planar (Np) conformers are present in the equilibrium, while a conformational change for the CNCC dihedral angle of the EDMIM cation leads to stabilize the formation of the more stable non-planar geometry in the crystalline phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)

    Article  PubMed  Google Scholar 

  2. Welton, T.: Ionic liquid in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)

    Article  Google Scholar 

  3. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)

    Article  PubMed  Google Scholar 

  4. Chiappe, C., Pieraccini, D.: Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 18, 275–295 (2005)

    Article  Google Scholar 

  5. Navarra, M.A.: Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. Mater. Res. Soc. Bull. 38, 548–553 (2013)

    Article  Google Scholar 

  6. Martinelli, A., Mare´chal, M., Östlund, Å, Cambedouzou, J.: Insights into the interplay between molecular structure and diffusional motion in 1-alkyl-3 methylimidazoliumionic liquids: a combined PFG NMR and X-ray scattering study. Phys. Chem. Chem. Phys. 15, 5510–5517 (2013)

    Article  PubMed  Google Scholar 

  7. Russina, O., Triolo, A., Gontrani, L., Caminiti, R., Xiao, D., Hines Jr, G.L., Bartsch, R.A., Quitevis, E.L., Plechkova, N.V., Seddon, K.R.: Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J. Phys. Condens. Matter 21, 424121–424129 (2009)

    Article  Google Scholar 

  8. Triolo, A., Russina, O., Bleif, H.J., Di Cola, E.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B. 111, 4641–4644 (2007)

    Article  PubMed  Google Scholar 

  9. Navarra, M.A., Fujimura, K., Sgambetterra, M., Tsurumaki, A., Panero, S., Nakamura, N., Ohno, H., Scrosati, B.: New ether-functionalized morpholinium- and piperidinium-based ionic liquids as electrolyte components in lithium and lithium-ion batteries. ChemSusChem 10, 2496–2504 (2017)

    Article  PubMed  Google Scholar 

  10. Zhou, Z.B., Matsumoto, H., Tatsumi, K.: Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chemistry. 12, 2196–2212 (2006)

    Article  PubMed  Google Scholar 

  11. Henderson, W.A., Young, V.G., Jr., Fox, D.M., De Long, H.C., Trulove, P.C.: Alkyl vs. alkoxy chains on ionic liquid cations. Chem. Commun. 35, 3708–3710 (2006)

    Article  Google Scholar 

  12. Li, H., Wang, Z., Chen, L., Wu, J., Huang, H., Yang, K., Wang, Y., Su, L., Yang, G.: Kinetic effect on pressure-induced phase transitions of room temperature ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. B. 119, 14245–14251 (2015)

    Article  PubMed  Google Scholar 

  13. Yoshimura, Y., Takekiyo, T., Abe, H., Hamaya, N.: High-pressure phase behavior of the room temperature ionic liquid 1-ethyl-3-methylimidazolium nitrate. J. Mol. Liq. 206, 89–94 (2015)

    Article  Google Scholar 

  14. Chen, F., You, T., Yuan, Y., Pei, C., Ren, X., Huang, Y., Yu, Z., Li, X., Haiyan, Z., Pan, Y., Yang, K., Wang, L.: Pressure-induced structural transitions of a room temperatureionic liquid—1-ethyl-3-methylimidazolium chloride. J. Chem. Phys. 146, 094502–094501 (2017)

    Article  Google Scholar 

  15. Takekiyo, T., Imai, Y., Hatano, N., Abe, H., Yoshimura, Y.: Conformational preferences of two imidazolium-based ionic liquids at high pressures. Chem. Phys. Lett. 511, 241–246 (2011)

    Article  Google Scholar 

  16. Vitucci, F.M., Trequattrini, F., Palumbo, O., Brubach, J.-B., Roy, P., Paolone, A.: Infrared spectra of bis(trifluoromethanesulfonyl)imide based ionic liquids: experiments and ab-initio simulations. Vib. Spectrosc. 74, 81–87 (2014)

    Article  Google Scholar 

  17. Vitucci, F.M., Trequattrini, F., Palumbo, O., Brubach, J.-B., Roy, P., Navarra, M.A., Panero, S., Paolone, A.: Stabilization of different conformers of bis(trifluoromethanesulfonyl)imide anion in ammonium-based ionic liquids at low temperatures. J. Phys. Chem. A 118, 8758–8764 (2014)

    Article  PubMed  Google Scholar 

  18. Palumbo, O., Trequattrini, F., Vitucci, F.M., Navarra, M.A., Panero, S., Paolone, A.: An Infrared spectroscopy study of the conformational evolution of the bis(trifluoromethanesulfonyl)imide ion in the liquid and in the glass state. Adv. Condens. Matter Phys. 2015, 176067-1-176067–11 (2015)

    Article  Google Scholar 

  19. Vitucci, F.M., Palumbo, O., Trequattrini, F., Brubach, J.-B., Roy, P., Meschini, I., Croce, F., Paolone, A.: Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: temperature dependence of the concentration of the anion conformers. J. Chem. Phys. 143, 094707–094701 (2015)

    Article  PubMed  Google Scholar 

  20. Capitani, F., Gatto, S., Postorino, P., Palumbo, O., Trequattrini, F., Deutsch, O.M., Brubach, J.-B., Roy, P., Paolone, A.: The complex dance of the two conformers of bis(trifluoromethanesulfonyl)imide as a function of pressure and temperature. J. Phys. Chem. B. 120, 1312–1318 (2016)

    Article  PubMed  Google Scholar 

  21. Capitani, F., Trequattrini, F., Palumbo, O., Paolone, A., Postorino, P.: Phase transitions of PYR14-TFSI as a function of pressure and temperature: the competition between smaller volume and lower energy conformer. J. Phys. Chem. B. 120, 2921–2928 (2016)

    Article  PubMed  Google Scholar 

  22. Palumbo, O., Trequattrini, F., Appetecchi, G.B., Paolone, A.: Influence of alkyl chain length on microscopic configurations of the anion in the crystalline phases of PYR1A-TFSI. J. Phys. Chem. C. 121, 11129–11135 (2017)

    Article  Google Scholar 

  23. Tsurumaki, A., Trequattrini, F., Palumbo, O., Panero, S., Paolone, A., Navarra, M.A.: The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet–Taft parameters. Phys. Chem. Chem. Phys. 20, 7989–7997 (2018)

    Article  PubMed  Google Scholar 

  24. Palumbo, O., Trequattrini, F., Navarra, M.A., Brubach, J.-B., Roy, P., Paolone, A.: Tailoring the physical properties of the mixtures of ionic liquids: a microscopic point of view. Phys. Chem. Chem. Phys. 19, 8322–8329 (2017)

    Article  PubMed  Google Scholar 

  25. Herstedt, M., Smirnov, M., Johansson, P., Chami, M., Grondin, J., Servant, L., Lassègues, J.C.: Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI). J. Raman Spectrosc 36, 762–770 (2005)

    Article  Google Scholar 

  26. Martinelli, A., Matic, A., Johansson, P., Jacobsson, P., Borjesson, L., Fernicola, A., Panero, S., Scrosati, B., Ohno, H.: Conformational evolution of TFSI in protic and aprotic ionic liquids. J. Raman Spectrosc. 42, 522–528 (2011)

    Article  Google Scholar 

  27. Triolo, A., Russina, O., Fazio, B., Appetecchi, G.B., Carewska, M., Passerini, S.: Nanoscale organization in piperidinium-based room temperature ionic liquids. J. Chem. Phys. 130, 164521–164526 (2009)

    Article  PubMed  Google Scholar 

  28. Zheng, W., Mohammed, A., Hines, L.G., Jr., Xiao, D., Martinez, O.J., Bartsch, R.A., Simon, S.L., Russina, O., Triolo, A., Quitevis, E.L.: Effect of cation symmetry on the morphology and physicochemical properties of imidazolium ionic liquids. J. Phys. Chem. B 115, 6572–6584 (2011)

    Article  PubMed  Google Scholar 

  29. Roy, P., GuidiCestelli, M., Nucara, A., Marcouille, O., Calvani, P., Giura, P., Paolone, A., Mathis, Y.-L., Gerschel, A.: Spectral distribution of infrared synchrotron radiation by an insertion device and its edges: a comparison between experimental and simulated spectra. Phys. Rev. Lett. 84, 483–486 (2000)

    Article  PubMed  Google Scholar 

  30. Roy, P., Brubach, J.-B., Calvani, P., De Marzi, G., Filabozzi, A., Gerschel, A., Giura, P., Lupi, S., Marcouille, O., Mermet, A., Nucara, A., Orphal, J., Paolone, A., Vervloet, M.: Infrared synchrotron radiation: from the production to the spectroscopic and microscopic applications. Nucl. Instrum. Methods Phys. Res., Sect. A. 467–468, 426–436 (2001)

  31. Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T., Slipchenko, L.V., Levchenko, S.V., O’Neill, D.P., DiStasio, R.A. Jr., Lochan, R.C., Wang, T., Beran, G.J., Besley, N.A., Herbert, J.M., Lin, C.Y., Van Voorhis, T., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E., Woodcock, I.I.I., Zhang, H.L., Bell, W., Chakraborty, A.T., Chipman, A.K., Keil, D.M., Warshel, F.J., Hehre, A., Schaefer, W.J., Kong, I.I.I.,H.F., Krylov, J., Gill, A.I., P. M., Head-Gordon, M.: Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006)

  32. Hehre, W.J.: A Guide to Molecular Mechanics and Quantum Chemical Calculations. Wavefunction, Inc., Irvine (2003)

    Google Scholar 

  33. Umebayashi, Y., Mitsugi, T., Fukuda, S., Fujimori, T., Fujii, K., Kanzaki, R., Takeuchi, M., Ishiguro, S.: Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. J. Phys. Chem. B. 111, 13028–13032 (2007)

    Article  PubMed  Google Scholar 

  34. Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: raman spectroscopic study and DFT calculations. J. Phys. Chem. B. 110, 8179–8183 (2006)

    Article  PubMed  Google Scholar 

  35. Umebayashi, Y., Fujimori, T., Sukizaki, T., Asada, M., Fujii, K., Kanzaki, R., Ishiguro, S.-I.: Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J. Phys. Chem. A 109, 8976–8982 (2005)

    Article  PubMed  Google Scholar 

  36. Blokhin, A.V., Paulechka, Y.U., Kabo., G.J.: Thermodynamic properties of [C6mim][NTf2] in the condensed state. J. Chem. Eng. Data 51, 1377–1388 (2006)

    Article  Google Scholar 

  37. Shimizu, Y., Ohte, Y., Yamamura, Y., Saito, K., Atake, T.: Low-temperature heat capacity of room-temperature ionic liquid,1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B. 110, 13970–13975 (2006)

    Article  PubMed  Google Scholar 

  38. Vitucci, F.M., Manzo, D., Navarra, M.A., Palumbo, O., Trequattrini, F., Panero, S., Bruni, P., Croce, F., Paolone, A.: Low temperature phase transitions of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide swelling a PVdF electrospun membrane. J. Phys. Chem. C 118, 5749–5755 (2014)

    Article  Google Scholar 

  39. Maria Moschovi, A., Dracopoulos, V.: Structure of protic (HCnImNTf2, n = 0–12) and aprotic (C1CnImNTf2, n = 1–12) imidazolium ionic liquids: a vibrational spectroscopic study. J. Mol. Liq. 210, 189–199 (2015)

    Article  Google Scholar 

  40. Holbrey, J.D., Reichert, W.M., Rogers, R.D.: Crystal structures of imidazolium bis(trifluoromethanesulfonyl)imide “ionic liquid” salts: the first organic salt with a cis-TFSI anion conformation. Dalton Trans. 15, 2267–2271 (2004)

    Article  Google Scholar 

  41. Choudhury, A.R., Winterton, N., Steiner, A., Cooper, A.L., Johnson, K.A.: In situ crystallization of ionic liquids with melting point below – 25 °C. CrystEngComm. 8, 742–745 (2006)

    Article  Google Scholar 

  42. Lassègues, J.C., Grondin, J., Holomb, R., Johansson, P.: Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc 38, 551–558 (2007)

    Article  Google Scholar 

  43. Zhang, S., Qi, X., Ma, X., Lu, L., Zhang, Q., Deng, Y.: Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-basedion pairs by density functional theory calculations and experiments. J. Phys. Org. Chem. 25, 248–257 (2012)

    Article  Google Scholar 

  44. Zhang, S., Qi, X., Ma, X., Lu, L., Deng, Y.: Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions. J. Phys. Chem. B. 114, 3912–3920 (2010)

    Article  PubMed  Google Scholar 

  45. Fakhraee, M., Zandkarimi, B., Salari, H., Gholami, M.R.: Hydroxyl-Functionalized 1–(2-hydroxyethyl)-3-methyl imidazolium ionic liquids: thermodynamic and structural properties using molecular dynamics simulations and ab initio calculations. J. Phys. Chem. B. 118, 14410–14428 (2014)

    Article  PubMed  Google Scholar 

  46. Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)

    Article  Google Scholar 

  47. Chang, H.-C., Jiang, J.-C., Su, J.-C., Chang, C.-Y., Lin, S.H.: Evidence of rotational isomerism in 1-butyl-3-methylimidazolium halides: a combined high-pressure infrared and Raman spectroscopic study. J. Phys. Chem. A 111, 9201–9206 (2007)

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank P. Roy and J.-B. Brubach for assistance at the AILES beamline of Synchrotron Soleil during beamtime #20170928 and #20190321. The beamtimes have received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730872 (CALIPSOplus).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Palumbo.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Material 1 (DOCX 10507 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cimini, A., Palumbo, O., Trequattrini, F. et al. Influence of the Alkyl Chain Length on the Low Temperature Phase Transitions of Imidazolium Based Ionic Liquids. J Solution Chem 51, 279–295 (2022). https://doi.org/10.1007/s10953-021-01079-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01079-2

Keywords

Navigation