Abstract
The effects induced by alkyl chain length on the thermal phase behavior for a series of imidazolium based ionic liquids (ILs) containing the anion bis(trifluoromethanesulfonyl)imide (TFSI) were investigated by infrared spectroscopy combined with density functional theory (DFT) calculations. In agreement with previous results on pyrrolidinium and ammonium based ionic liquids sharing the TFSI anion, our study shows that with increasing the length of the alky chain only the less stable cis-TFSI is retained in the solid state, while for shorter chain the trans-TFSI predominates in the crystalline phase. Also, we examined the remarkable effect on the packing efficiency due to the addition of 2-hydroxyethyl group on the imidazolium cation ring, reporting that the absence of crystallization is observed in correspondence with the presence of both the conformers of TFSI in the whole temperature range (150–325 K). Moreover, a detailed study of 1-ethyl-2,3-dimethylimidazolium-TFSI (EDMIM-TFSI) reveals the existence of cation rotational isomerism. In the liquid phase both planar (P) and non-planar (Np) conformers are present in the equilibrium, while a conformational change for the CNCC dihedral angle of the EDMIM cation leads to stabilize the formation of the more stable non-planar geometry in the crystalline phase.
Similar content being viewed by others
References
Plechkova, N.V., Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37, 123–150 (2008)
Welton, T.: Ionic liquid in catalysis. Coord. Chem. Rev. 248, 2459–2477 (2004)
Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009)
Chiappe, C., Pieraccini, D.: Ionic liquids: solvent properties and organic reactivity. J. Phys. Org. Chem. 18, 275–295 (2005)
Navarra, M.A.: Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries. Mater. Res. Soc. Bull. 38, 548–553 (2013)
Martinelli, A., Mare´chal, M., Östlund, Å, Cambedouzou, J.: Insights into the interplay between molecular structure and diffusional motion in 1-alkyl-3 methylimidazoliumionic liquids: a combined PFG NMR and X-ray scattering study. Phys. Chem. Chem. Phys. 15, 5510–5517 (2013)
Russina, O., Triolo, A., Gontrani, L., Caminiti, R., Xiao, D., Hines Jr, G.L., Bartsch, R.A., Quitevis, E.L., Plechkova, N.V., Seddon, K.R.: Morphology and intermolecular dynamics of 1-alkyl-3-methylimidazolium bis{(trifluoromethane)sulfonyl}amide ionic liquids: structural and dynamic evidence of nanoscale segregation. J. Phys. Condens. Matter 21, 424121–424129 (2009)
Triolo, A., Russina, O., Bleif, H.J., Di Cola, E.: Nanoscale segregation in room temperature ionic liquids. J. Phys. Chem. B. 111, 4641–4644 (2007)
Navarra, M.A., Fujimura, K., Sgambetterra, M., Tsurumaki, A., Panero, S., Nakamura, N., Ohno, H., Scrosati, B.: New ether-functionalized morpholinium- and piperidinium-based ionic liquids as electrolyte components in lithium and lithium-ion batteries. ChemSusChem 10, 2496–2504 (2017)
Zhou, Z.B., Matsumoto, H., Tatsumi, K.: Cyclic quaternary ammonium ionic liquids with perfluoroalkyltrifluoroborates: synthesis, characterization, and properties. Chemistry. 12, 2196–2212 (2006)
Henderson, W.A., Young, V.G., Jr., Fox, D.M., De Long, H.C., Trulove, P.C.: Alkyl vs. alkoxy chains on ionic liquid cations. Chem. Commun. 35, 3708–3710 (2006)
Li, H., Wang, Z., Chen, L., Wu, J., Huang, H., Yang, K., Wang, Y., Su, L., Yang, G.: Kinetic effect on pressure-induced phase transitions of room temperature ionic liquid, 1-ethyl-3-methylimidazolium trifluoromethanesulfonate. J. Phys. Chem. B. 119, 14245–14251 (2015)
Yoshimura, Y., Takekiyo, T., Abe, H., Hamaya, N.: High-pressure phase behavior of the room temperature ionic liquid 1-ethyl-3-methylimidazolium nitrate. J. Mol. Liq. 206, 89–94 (2015)
Chen, F., You, T., Yuan, Y., Pei, C., Ren, X., Huang, Y., Yu, Z., Li, X., Haiyan, Z., Pan, Y., Yang, K., Wang, L.: Pressure-induced structural transitions of a room temperatureionic liquid—1-ethyl-3-methylimidazolium chloride. J. Chem. Phys. 146, 094502–094501 (2017)
Takekiyo, T., Imai, Y., Hatano, N., Abe, H., Yoshimura, Y.: Conformational preferences of two imidazolium-based ionic liquids at high pressures. Chem. Phys. Lett. 511, 241–246 (2011)
Vitucci, F.M., Trequattrini, F., Palumbo, O., Brubach, J.-B., Roy, P., Paolone, A.: Infrared spectra of bis(trifluoromethanesulfonyl)imide based ionic liquids: experiments and ab-initio simulations. Vib. Spectrosc. 74, 81–87 (2014)
Vitucci, F.M., Trequattrini, F., Palumbo, O., Brubach, J.-B., Roy, P., Navarra, M.A., Panero, S., Paolone, A.: Stabilization of different conformers of bis(trifluoromethanesulfonyl)imide anion in ammonium-based ionic liquids at low temperatures. J. Phys. Chem. A 118, 8758–8764 (2014)
Palumbo, O., Trequattrini, F., Vitucci, F.M., Navarra, M.A., Panero, S., Paolone, A.: An Infrared spectroscopy study of the conformational evolution of the bis(trifluoromethanesulfonyl)imide ion in the liquid and in the glass state. Adv. Condens. Matter Phys. 2015, 176067-1-176067–11 (2015)
Vitucci, F.M., Palumbo, O., Trequattrini, F., Brubach, J.-B., Roy, P., Meschini, I., Croce, F., Paolone, A.: Interaction of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide with an electrospun PVdF membrane: temperature dependence of the concentration of the anion conformers. J. Chem. Phys. 143, 094707–094701 (2015)
Capitani, F., Gatto, S., Postorino, P., Palumbo, O., Trequattrini, F., Deutsch, O.M., Brubach, J.-B., Roy, P., Paolone, A.: The complex dance of the two conformers of bis(trifluoromethanesulfonyl)imide as a function of pressure and temperature. J. Phys. Chem. B. 120, 1312–1318 (2016)
Capitani, F., Trequattrini, F., Palumbo, O., Paolone, A., Postorino, P.: Phase transitions of PYR14-TFSI as a function of pressure and temperature: the competition between smaller volume and lower energy conformer. J. Phys. Chem. B. 120, 2921–2928 (2016)
Palumbo, O., Trequattrini, F., Appetecchi, G.B., Paolone, A.: Influence of alkyl chain length on microscopic configurations of the anion in the crystalline phases of PYR1A-TFSI. J. Phys. Chem. C. 121, 11129–11135 (2017)
Tsurumaki, A., Trequattrini, F., Palumbo, O., Panero, S., Paolone, A., Navarra, M.A.: The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet–Taft parameters. Phys. Chem. Chem. Phys. 20, 7989–7997 (2018)
Palumbo, O., Trequattrini, F., Navarra, M.A., Brubach, J.-B., Roy, P., Paolone, A.: Tailoring the physical properties of the mixtures of ionic liquids: a microscopic point of view. Phys. Chem. Chem. Phys. 19, 8322–8329 (2017)
Herstedt, M., Smirnov, M., Johansson, P., Chami, M., Grondin, J., Servant, L., Lassègues, J.C.: Spectroscopic characterization of the conformational states of the bis(trifluoromethanesulfonyl)imide anion (TFSI–). J. Raman Spectrosc 36, 762–770 (2005)
Martinelli, A., Matic, A., Johansson, P., Jacobsson, P., Borjesson, L., Fernicola, A., Panero, S., Scrosati, B., Ohno, H.: Conformational evolution of TFSI– in protic and aprotic ionic liquids. J. Raman Spectrosc. 42, 522–528 (2011)
Triolo, A., Russina, O., Fazio, B., Appetecchi, G.B., Carewska, M., Passerini, S.: Nanoscale organization in piperidinium-based room temperature ionic liquids. J. Chem. Phys. 130, 164521–164526 (2009)
Zheng, W., Mohammed, A., Hines, L.G., Jr., Xiao, D., Martinez, O.J., Bartsch, R.A., Simon, S.L., Russina, O., Triolo, A., Quitevis, E.L.: Effect of cation symmetry on the morphology and physicochemical properties of imidazolium ionic liquids. J. Phys. Chem. B 115, 6572–6584 (2011)
Roy, P., GuidiCestelli, M., Nucara, A., Marcouille, O., Calvani, P., Giura, P., Paolone, A., Mathis, Y.-L., Gerschel, A.: Spectral distribution of infrared synchrotron radiation by an insertion device and its edges: a comparison between experimental and simulated spectra. Phys. Rev. Lett. 84, 483–486 (2000)
Roy, P., Brubach, J.-B., Calvani, P., De Marzi, G., Filabozzi, A., Gerschel, A., Giura, P., Lupi, S., Marcouille, O., Mermet, A., Nucara, A., Orphal, J., Paolone, A., Vervloet, M.: Infrared synchrotron radiation: from the production to the spectroscopic and microscopic applications. Nucl. Instrum. Methods Phys. Res., Sect. A. 467–468, 426–436 (2001)
Shao, Y., Molnar, L.F., Jung, Y., Kussmann, J., Ochsenfeld, C., Brown, S.T., Gilbert, A.T., Slipchenko, L.V., Levchenko, S.V., O’Neill, D.P., DiStasio, R.A. Jr., Lochan, R.C., Wang, T., Beran, G.J., Besley, N.A., Herbert, J.M., Lin, C.Y., Van Voorhis, T., Chien, S.H., Sodt, A., Steele, R.P., Rassolov, V.A., Maslen, P.E., Korambath, P.P., Adamson, R.D., Austin, B., Baker, J., Byrd, E.F., Dachsel, H., Doerksen, R.J., Dreuw, A., Dunietz, B.D., Dutoi, A.D., Furlani, T.R., Gwaltney, S.R., Heyden, A., Hirata, S., Hsu, C.P., Kedziora, G., Khalliulin, R.Z., Klunzinger, P., Lee, A.M., Lee, M.S., Liang, W., Lotan, I., Nair, N., Peters, B., Proynov, E.I., Pieniazek, P.A., Rhee, Y.M., Ritchie, J., Rosta, E., Sherrill, C.D., Simmonett, A.C., Subotnik, J.E., Woodcock, I.I.I., Zhang, H.L., Bell, W., Chakraborty, A.T., Chipman, A.K., Keil, D.M., Warshel, F.J., Hehre, A., Schaefer, W.J., Kong, I.I.I.,H.F., Krylov, J., Gill, A.I., P. M., Head-Gordon, M.: Advances in methods and algorithms in a modern quantum chemistry program package. Phys. Chem. Chem. Phys. 8, 3172–3191 (2006)
Hehre, W.J.: A Guide to Molecular Mechanics and Quantum Chemical Calculations. Wavefunction, Inc., Irvine (2003)
Umebayashi, Y., Mitsugi, T., Fukuda, S., Fujimori, T., Fujii, K., Kanzaki, R., Takeuchi, M., Ishiguro, S.: Lithium ion solvation in room-temperature ionic liquids involving bis(trifluoromethanesulfonyl) imide anion studied by Raman spectroscopy and DFT calculations. J. Phys. Chem. B. 111, 13028–13032 (2007)
Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: raman spectroscopic study and DFT calculations. J. Phys. Chem. B. 110, 8179–8183 (2006)
Umebayashi, Y., Fujimori, T., Sukizaki, T., Asada, M., Fujii, K., Kanzaki, R., Ishiguro, S.-I.: Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J. Phys. Chem. A 109, 8976–8982 (2005)
Blokhin, A.V., Paulechka, Y.U., Kabo., G.J.: Thermodynamic properties of [C6mim][NTf2] in the condensed state. J. Chem. Eng. Data 51, 1377–1388 (2006)
Shimizu, Y., Ohte, Y., Yamamura, Y., Saito, K., Atake, T.: Low-temperature heat capacity of room-temperature ionic liquid,1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide. J. Phys. Chem. B. 110, 13970–13975 (2006)
Vitucci, F.M., Manzo, D., Navarra, M.A., Palumbo, O., Trequattrini, F., Panero, S., Bruni, P., Croce, F., Paolone, A.: Low temperature phase transitions of 1-butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide swelling a PVdF electrospun membrane. J. Phys. Chem. C 118, 5749–5755 (2014)
Maria Moschovi, A., Dracopoulos, V.: Structure of protic (HCnImNTf2, n = 0–12) and aprotic (C1CnImNTf2, n = 1–12) imidazolium ionic liquids: a vibrational spectroscopic study. J. Mol. Liq. 210, 189–199 (2015)
Holbrey, J.D., Reichert, W.M., Rogers, R.D.: Crystal structures of imidazolium bis(trifluoromethanesulfonyl)imide “ionic liquid” salts: the first organic salt with a cis-TFSI anion conformation. Dalton Trans. 15, 2267–2271 (2004)
Choudhury, A.R., Winterton, N., Steiner, A., Cooper, A.L., Johnson, K.A.: In situ crystallization of ionic liquids with melting point below – 25 °C. CrystEngComm. 8, 742–745 (2006)
Lassègues, J.C., Grondin, J., Holomb, R., Johansson, P.: Raman and ab initio study of the conformational isomerism in the 1-ethyl-3-methyl-imidazolium bis(trifluoromethanesulfonyl)imide ionic liquid. J. Raman Spectrosc 38, 551–558 (2007)
Zhang, S., Qi, X., Ma, X., Lu, L., Zhang, Q., Deng, Y.: Investigation of cation–anion interaction in 1-(2-hydroxyethyl)-3-methylimidazolium-basedion pairs by density functional theory calculations and experiments. J. Phys. Org. Chem. 25, 248–257 (2012)
Zhang, S., Qi, X., Ma, X., Lu, L., Deng, Y.: Hydroxyl ionic liquids: the differentiating effect of hydroxyl on polarity due to ionic hydrogen bonds between hydroxyl and anions. J. Phys. Chem. B. 114, 3912–3920 (2010)
Fakhraee, M., Zandkarimi, B., Salari, H., Gholami, M.R.: Hydroxyl-Functionalized 1–(2-hydroxyethyl)-3-methyl imidazolium ionic liquids: thermodynamic and structural properties using molecular dynamics simulations and ab initio calculations. J. Phys. Chem. B. 118, 14410–14428 (2014)
Ozawa, R., Hayashi, S., Saha, S., Kobayashi, A., Hamaguchi, H.: Rotational isomerism and structure of the 1-butyl-3-methylimidazolium cation in the ionic liquid state. Chem. Lett. 32, 948–949 (2003)
Chang, H.-C., Jiang, J.-C., Su, J.-C., Chang, C.-Y., Lin, S.H.: Evidence of rotational isomerism in 1-butyl-3-methylimidazolium halides: a combined high-pressure infrared and Raman spectroscopic study. J. Phys. Chem. A 111, 9201–9206 (2007)
Acknowledgements
We wish to thank P. Roy and J.-B. Brubach for assistance at the AILES beamline of Synchrotron Soleil during beamtime #20170928 and #20190321. The beamtimes have received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 730872 (CALIPSOplus).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Cimini, A., Palumbo, O., Trequattrini, F. et al. Influence of the Alkyl Chain Length on the Low Temperature Phase Transitions of Imidazolium Based Ionic Liquids. J Solution Chem 51, 279–295 (2022). https://doi.org/10.1007/s10953-021-01079-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-021-01079-2