Skip to main content
Log in

Thermodynamic Measurements and Correlation of Properties for Tribromomethane

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Experimental saturated vapor pressure data were measured using a Modified Swietoslawski-type ebulliometer and correlated with the Antoine, Clarke–Glew, and Wagner equations. A least root-mean-square deviation (RMSD) was obtained for the Antoine (0.667) and Wagner (0.796) equations while the group contribution and group interaction (GCGI) method by Nanoolal et al. showed an RMSD of 1.094. The estimated enthalpy of vaporization is found to be 46.87 kJ·mol−1 and 38.56 kJ·mol−1 at reference temperature (298.15 K) and normal boiling point (422.28 K), respectively, and was well verified with Watson’s correlation. The critical properties and acentric factor are reported based on the GCGI method. Experimental density data are reported and are well correlated with the DIPPR 116 correlation with an RMSD of 0.00416. Joback’s method predicted the densities well with a maximum absolute deviation (MAD) of 0.00548. The Vogel–Tamman–Fulcher equation correlated the experimental viscosities in the temperature range of 288.15–338.15 K with a MAD of 0.002. The isothermal expansivity for tribromomethane shows a linear trend with a weak temperature dependency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Harlow, I.F., Ross, O.C.: Preparation of brominated hydrocarbons. US patent 1891415A (1932)

  2. Dauphin, G., Kergomard, A.A.: The acid dissociation of some sulfonamides. Bull. Soc. Chim. Fr. 3, 486–492 (1961)

    CAS  Google Scholar 

  3. Radulescu, D., Alexa, M.B.: Vapor pressure measurements from new dynamic and static methods. The applicability of the reaction isochore to the measurement of the latent heat of vaporization. Soc. Chim. Rom. 20A, 89–113 (1938)

    CAS  Google Scholar 

  4. Philippe, R., Jambon, C., Clechet, P.: Thermodynamic properties of dimethylsulfoxide + halomethane mixtures: II. Vapour pressures and excess thermodynamic functions. J. Chem. Thermodyn. 5, 431–444 (1973)

    Article  CAS  Google Scholar 

  5. Sharma, B.R., Singh, P.P.: Excess Gibbs energies of mixing for some binary mixtures. J. Chem. Eng. Data 20, 360–363 (1975)

    Article  CAS  Google Scholar 

  6. Kahlbaum, G.W.A.: The dependence of boiling temperature on the atmospheric pressure. Ber. Dtsch. Chem. Ges. 17, 1245–1262 (1884)

    Article  Google Scholar 

  7. Boublik, T., Aim, K.: Heats of vaporization of simple non-spherical molecule compounds. Collect. Czech. Chem. Commun. 37, 3513–3521 (1972)

    Article  CAS  Google Scholar 

  8. Paul, T., Schantz, K.: The boiling point as indicator of purity and a new apparatus for its determination without thermometer correction. Arch. Pharm. Weinheim 257, 87 (1919)

    Article  CAS  Google Scholar 

  9. Manjeshwar, L.S., Aminabhavi, T.M.: Densities and viscosities of binary liquid mixtures containing bromoform at 45 °C. J. Chem. Eng. Data 33, 184–185 (1988)

    Article  CAS  Google Scholar 

  10. Aminabhavi, T.M., Manjeshwar, L.S., Balundgi, R.H.: Viscosities of binary liquid mixtures. J. Chem. Eng. Data 32, 50–52 (1987)

    Article  CAS  Google Scholar 

  11. Lecat, M.: New binary azeotropes: 7th List. Ann. Soc. Sci. Brux. Ser. B 47, 108–114 (1927)

    Google Scholar 

  12. Lecat, M.: Negative and other azeotropes. C. R. Hebd. Seances Acad. Sci. 217, 242–246 (1943)

    CAS  Google Scholar 

  13. Timmermans, J., Martin, F.: Study of the physical constants of twenty organic compounds. J. Chim. Phys. Phys. Chim. Biol. 25, 411–451 (1928)

    Article  CAS  Google Scholar 

  14. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw–Hill Education (2001); ISBN: 9780070116825

  15. Fan, C.L., Wang, L.S.: Vapor pressure of dimethyl phosphite and dimethyl methylphosphonate. J. Chem. Eng. Data 55, 479–481 (2010)

    Article  CAS  Google Scholar 

  16. Wang, X., Dong, H., Zeng, Z., Wu, C.: Measurement and correlation of the saturated vapour pressure of vinyltriethoxysilane. J. Solution Chem. 44, 67–76 (2015)

    Article  CAS  Google Scholar 

  17. Ihmels, C., Horstmann, S., Grybat, A.: Vapor pressures and vapor–liquid critical properties of four pentene isomers. J. Chem. Eng. Data 62, 2837–2841 (2017)

    Article  CAS  Google Scholar 

  18. Xu, J., Li, S., Zeng, Z., Xue, W.: Heat capacity, density, vapor pressure, and enthalpy of vaporization of isoamyl DL-lactate. J. Chem. Eng. Data 64, 3793–3798 (2019)

    Article  CAS  Google Scholar 

  19. Watson, K.M.: Thermodynamics of the liquid state. Ind. Eng. Chem. 35, 398–406 (1943)

    Article  CAS  Google Scholar 

  20. Joback, K.G., Reid, R.C.: Estimation of pure-component properties from group-contributions. Chem. Eng. Commun. 57, 233–243 (1987)

    Article  CAS  Google Scholar 

  21. Constantinou, L., Gani, R.: New group contribution method for estimating properties of pure compounds. AIChE J. 40, 1697–1710 (1994)

    Article  CAS  Google Scholar 

  22. Constantinou, L., Gani, R., O’Connell, J.P.: Estimation of the acentric factor and the liquid molar volume at 298 K using a new group contribution method. Fluid Phase Equilib. 103, 11–22 (1995)

    Article  CAS  Google Scholar 

  23. Marrero, J., Gani, R.: Group–contribution-based estimation of pure component properties. Fluid Phase Equilib. 183, 183–208 (2001)

    Article  Google Scholar 

  24. Klincewicz, K.M., Reid, R.C.: Estimation of critical properties with group contribution methods. AIChE J. 30, 137–142 (1984)

    Article  CAS  Google Scholar 

  25. Nannoolal, Y., Rarey, J., Ramjugernath, D., Cordes, W.: Estimation of pure component properties: Part 1. Estimation of the normal boiling point of non-electrolyte organic compounds via croup contributions and group interactions. Fluid Phase Equilib. 226, 45–63 (2004)

    Article  CAS  Google Scholar 

  26. Nannoolal, Y., Rarey, J., Ramjugernath, D.: Estimation of pure component properties: Part 2. Estimation of critical property data by group contribution. Fluid Phase Equilib. 252, 1–27 (2007)

    Article  CAS  Google Scholar 

  27. Sanghvi, R., Yalkowsky, S.H.: Estimation of the normal boiling point of organic compounds. Ind. Eng. Chem. Res. 45, 2856–2861 (2006)

    Article  CAS  Google Scholar 

  28. Li, J., Xia, L., Xiang, S.: A new method based on elements and chemical bonds for organic compounds critical properties estimation. Fluid Phase Equilib. 417, 1–6 (2016)

    Article  CAS  Google Scholar 

  29. Ghasemitabar, H., Movagharnejad, K.: Estimation of the normal boiling point of organic compounds via a new group contribution method. Fluid Phase Equilib. 411, 13–23 (2016)

    Article  CAS  Google Scholar 

  30. Pascal, P.: Supposed formation of carbon from piperonyl derivatives. Bull. Soc. Chim. Fr. 37, 1043–1045 (1925)

    CAS  Google Scholar 

  31. Turner, W.E.S.: The molecular condition of some organic ammonium salts in bromoform. J. Chem. Soc. 101, 1923–1928 (1912)

    Article  CAS  Google Scholar 

  32. Sherman, A., Sherman, J.: The coefficient of expansion of bromoform. J. Am. Chem. Soc. 50, 1119–1120 (1928)

    Article  Google Scholar 

  33. Lagemann, R.T., Mcmillan, D.R., Woolf, W.E.: Temperature variation of ultrasonic velocity in liquids. J. Chem. Phys. 17, 369–373 (1949)

    Article  CAS  Google Scholar 

  34. Perkin, W.H.: On the magnetic rotary polarisation of compounds in relation to their chemical consitution; with observations on the preparation and relative densities of the bodies examined. J. Chem. Soc. 45, 421–580 (1884)

    Article  CAS  Google Scholar 

  35. Perkin, W.H.: The refractive power of ethylene dichloride is studied. J. Prakt. Chem. 32, 497–523 (1885)

    Google Scholar 

  36. Buhmann H.: Boiling point determination of bromoform. In: Dab: VI The physical constants of bromoform. Arch. Pharm. Weinheim 266, 123–126 (1928)

  37. Thorpe, T.E.J.: On the relation between the molecular weights of substances and their specific gravities in the liquid state. Chem. Soc. 37, 141–143 (1880)

    Article  CAS  Google Scholar 

  38. Friend, J.N., Hargreaves, W.D.: Viscosity at the boiling point, the rheochor. Philos. Mag. 34, 643–650 (1943)

    Article  CAS  Google Scholar 

  39. Wolf, F., Sauerwald, F.: Surface tension measurements. Kolloid Z. 118, 1–10 (1950)

    Article  CAS  Google Scholar 

  40. Gladstone, J.H.: XXXII—molecular refraction and dispersion of various substances. J. Chem. Soc. 59, 290–301 (1891)

    Article  CAS  Google Scholar 

  41. Smyth, C.P., Rogers, E.H.: The dielectric polarization of liquids: IX. The electric moments of the alkyl halides and halogenated methanes. J. Am. Chem. Soc. 52, 2227–2240 (1930)

    Article  CAS  Google Scholar 

  42. Patterson, T.S., Thomson, D.: XXXV—the influence of solvents on the rotation of optically active compounds. Part XI Ethyl tartrate in aliphatic halogen derivatives. J. Chem. Soc. 93, 355–371 (1908)

    Article  CAS  Google Scholar 

  43. Kahlbaum, G.W.A.: Studies on vapor pressure measurements: II. Z. Phys. Chem. Stoechiom. Verwandschaftsl. 26, 577–658 (1898)

    Article  Google Scholar 

  44. Oppenheimer, F.: Die Veränderung der Capillaritätskonstante des Quecksilbers Durch Zusatz Kleiner Mengen Alkali- und Erdalkalimetall. Z. Anorg. Allg. Chem. 171, 98–102 (1928)

    Article  CAS  Google Scholar 

  45. Desreux, V.: A study of the parachor. Bull. Soc. Chim. Belg. 44, 249–287 (1935)

    CAS  Google Scholar 

  46. Earp, D.P., Glasstone, S.: Dielectric polarisation and molecular-compound formation in solution. J. Chem. Soc. 201, 709–1723 (1935)

    Google Scholar 

  47. Stevels, J.M.: The relation between refraction data and reactivity of halogenated methane derivatives. Trans. Faraday Soc. 33, 1381–1390 (1937)

    Article  CAS  Google Scholar 

  48. Morgan, S.O., Yager, W.A.: Dielectric properties of organic components. Relation to chemical composition and physical structure. Ind. Eng. Chem. 32, 1519–1528 (1940)

    Article  CAS  Google Scholar 

  49. Suhrmann, R., Klein, P.: The structure of the second CH harmonic oscillation and the determination of integral extinction equivalents in liquid aliphatic and aromatic hydrocarbons in the infrared spectrum. Z. Phys. Chem. B 50, 23–72 (1941)

    Article  Google Scholar 

  50. Schaaffs, W.: Investigations on the velocity of sound and constitution I. The velocity of sound in organic liquids. Z. Phys. Chem. (Leipz.) 194, 28–38 (1944)

    Google Scholar 

  51. French, C.M., Trew, V.C.G.: Diamagnetic susceptibility of some alkyl and aryl halides. Trans. Faraday Soc. 41, 439–449 (1945)

    Article  CAS  Google Scholar 

  52. Vogel, A.I.: Physical properties and chemical constitution: XVIII Miscellaneous compounds investigation of the so-called coordinate or dative link in esters of oxy acids and in nitro paraffins by molecular refractivity determinations. J. Chem. Soc. 1833–1855 (1948)

  53. Parks, G.S.: Absorption by simultaneous diffusion and chemical reaction. Trans. Faraday Soc. 46, 300–304 (1950)

    Article  Google Scholar 

  54. Auwers, K.V., Harres, L.: Zur Spektrochemie Aliphatischer Nitroverbindungen. Ber. Dtsch. Chem. Ges. 62b, 2287–2297 (1929)

    Article  CAS  Google Scholar 

  55. Buchowski, H., Janaszewski, B.T.: Vapor pressure and excess free enthalpy of bromoform–2,2,4-trimethylpentane mixtures. J. Bull. Acad. Pol. Sci. Chim. 14, 403–407 (1966)

    CAS  Google Scholar 

  56. Dolezalek, F.S.: The theory of binary mixtures: VII The ethyl ether + bromoform mixture. Z. Phys. Chem. Stoechiom. Verwandschaftsl. 98, 395–400 (1921)

    Article  CAS  Google Scholar 

  57. Trew, V.C.G.: Physical properties of mixtures of acetone and bromoform. Trans. Faraday Soc. 28, 509–514 (1932)

    Article  Google Scholar 

  58. Tschamler, H., Richter, E., Wettig, F.: Binary liquid mixtures: XIII The miscibility of chlorine (β, β’-dichlorodiethylether) with halogenated hydrocarbon. Monatsh. Chem. 80, 856–863 (1949)

    Article  CAS  Google Scholar 

  59. Singh, P.P., Malik, R., Maken, S., Acree, J.W.E., Zvaigzne, A.I.: Investigations of associated solutions. 12. Mole fraction vs. volume fraction based association constants for predicting excess molar enthalpies of acetone–bromoform–alkane mixtures. Thermochim. Acta 165, 113–127 (1990)

    Article  CAS  Google Scholar 

  60. Aralaguppi, I.M., Aminabhavi, M.T., Balundgi, R.H., Joshi, S.S.: Thermodynamic interactions in mixtures of bromoform with hydrocarbons. J. Phys. Chem. 95, 5299–5308 (1991)

    Article  CAS  Google Scholar 

  61. Aminabhavi, T.M., Raikar, S.K.: A study on mixing properties of binary mixtures of bromoform with aliphatic alcohols. J. Chem. Eng. Data 38, 310–319 (1993)

    Article  CAS  Google Scholar 

  62. Blanco, S.T., Munoz, J., Velasco, I., Otin, S.: Excess molar enthalpies of binary mixtures containing mono- and polybromoalkanes at 298.15 K. J. Chem. Eng. Data 40, 605–606 (1995)

    Article  CAS  Google Scholar 

  63. Aminabhavi, T.M., Patil, V.B.: Density, viscosity, refractive index, and speed of sound in binary mixtures of ethenylbenzene with N,N-dimethylacetamide, tetrahydrofuran, N,N-dimethylformamide, 1,4-dioxane, dimethyl sulfoxide, chloroform, bromoform, and 1-chloronaphthalene in the temperature interval (298.15–308.15) K. J. Chem. Eng. Data 43, 497–503 (1998)

    Article  CAS  Google Scholar 

  64. Schmidt, R.L., Clever, H.L.: Thermodynamics of binary liquid mixtures by Rayleigh light scattering. J. Phys. Chem. 72, 1529–1536 (1968)

    Article  Google Scholar 

  65. Aminabhavi, T.M., Aminabhavi, V.A., Joshi, S.S., Balundgi, R.H.: Excess properties of some binary liquid mixtures in the temperature range 298.15–313.15 K. Indian J. Technol. 29, 545–557 (1991)

    CAS  Google Scholar 

  66. Drucker, K., Kassel, R.: Fluidity of binary mixtures. Z. Phys. Chem. Stoechiom. Verwandschaftsl. 76, 367–384 (1911)

    Article  CAS  Google Scholar 

  67. Kosuru, R.K., Aniya, V., Kumari, A., Chitturi, H.S., Sreeramoju, A., Thella, P.K., Satyavathi, B.: Measurement and correlation studies of phase equilibria and thermophysical properties of 4-tert-butylbenzaldehyde. J. Mol. Liq. 280, 11–17 (2019)

    Article  CAS  Google Scholar 

  68. Hoffmann, D., Castier, M., Paredes, M.L.L., Mattedi, S.: Liquid phase density, sound speed, and vapor pressure of linear alkanes using the Mattedi–Tavares–Castier equation of state. Ind. Eng. Chem. Res. 58, 6767–6777 (2019)

    Article  CAS  Google Scholar 

  69. Rackett, H.G.: Equation of state for saturated liquids. J. Chem. Eng. Data 15, 514–517 (1970)

    Article  CAS  Google Scholar 

  70. Zheng, T., Fang, J., Xie, Q., Wu, Z., Lu, M., Xia, F., Deng, D., Nie, Y., Ji, J.: Measurement and correlation of the density, viscosity and vapor pressure of fatty acid 2-ethyhexyl esters. J. Chem. Thermodyn. 139, 243–250 (2019)

    Article  Google Scholar 

  71. Nannoolal, Y., Rarey, J., Ramjugernath, D.: Estimation of purecomponent properties. Part 4: Estimation of the saturated liquid viscosity of non-electrolyte organic compounds via group contributions and group interactions. Fluid Phase Equilib. 281, 97–119 (2009)

    Article  CAS  Google Scholar 

  72. Orrick, C., Erbar, J.H.: As Reported in R.C. Reid, J.M. Prausnitz, T.K. Sherwood, The Properties of Gases and Liquids, 3rd edn. McGraw–Hill, New York (1977)

  73. Sastri, S.R.S., Rao, K.K.: A new group contribution method for predicting viscosity of organic liquids. Chem. Eng. J. 50, 9–25 (1992)

    Article  CAS  Google Scholar 

  74. Power, P.P.: Inorganic Synthesis, vol. 37. Wiley, Hoboken (2018)

    Book  Google Scholar 

  75. Reddy, A., Nagar, H., Satyavathi, B., Aniya, V.: Phase equilibria and thermophysical properties of dibromomethane: measurement and correlation studies. J. Mol. Liq. 306, 112917 (2020)

    Article  CAS  Google Scholar 

  76. Aniya, V., Tangirala, R., Thella, P.K., Satyavathi, B.: Measurement and correlation studies of the saturated vapor pressure, density, refractive indices, and viscosity of methyl 4-tert-butylbenzoate. J. Chem. Eng. Data 62, 96–104 (2016)

    Article  Google Scholar 

  77. Singh, M.: Survismeter, 2-In-1 for viscosity and surface tension measurement, an excellent invention for industrial proliferation of surface forces in liquids. Surf. Rev. Lett. 14, 973–983 (2007)

    Article  CAS  Google Scholar 

  78. Nannoolal, Y., Rarey, J., Ramjugernath, D.: Estimation of pure component properties: Part 3. Estimation of vapor pressure of non-electrolyte organic compounds via group contribution and group interactions. Fluid Phase Equilib. 269, 117–133 (2008)

    Article  CAS  Google Scholar 

  79. Layenz, J., Watson, I.: Enthalpies of vaporization of organic compounds. Acta Chem. Scand. 26, 3148–3152 (1972)

    Article  Google Scholar 

  80. Trew, V.C.G., Spencer, J.F.: The magnetic susceptibility of binary systems of organic liquids. Proc. R. Soc. Lond. Ser. A 131, 209–213 (1931)

    Article  CAS  Google Scholar 

  81. Aniya, V., De, D., Singh, A., Satyavathi, B.: Isobaric phase equilibrium of tert-butyl alcohol + glycerol at local and subatmospheric pressures, volumetric properties, and molar refractivity from 303.15 to 333.15 K of tert-butyl alcohol + glycerol, tert-butyl alcohol + water, and water + glycerol binary systems. J. Chem. Eng. Data 61, 1850–1863 (2016)

    Article  CAS  Google Scholar 

  82. Beysens, D., Clamettes, P.: Temperature dependence of the refractive index of liquids: deviations from the Lorentz–Lorenz formula. J. Chem. Phys. 66, 766–771 (1977)

    Article  CAS  Google Scholar 

  83. Riddick, J.A., Bunger, W.B., Sakano, T.K.: Organic Solvents: Physical Properties And Methods of Purification, 4th edn., vol. II. Wiley, New York (1986)

  84. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Director, CSIR-IICT (Ms. No. IICT/Pubs./2020/168) for providing all the required facilities to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Harsha Nagar or Vineet Aniya.

Ethics declarations

Conflict of interest

No potential conflict of interest is reported by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 9, 10, 11 and 12.

Table 9 Group contributions and group interactions parameters based on Nanoolal et al. (NL) [78] for the estimation of vapor pressures data for tibromomethane
Table 10 Literature densities for the development of correlations coefficients for tibromomethane
Table 11 Estimation of normal boiling point, critical temperature, critical pressure, and critical volume of Dibromomethane
Table 12 Tibromomethane viscosity estimation based on group contribution and group interaction methods

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naresh, K., Nagar, H. & Aniya, V. Thermodynamic Measurements and Correlation of Properties for Tribromomethane. J Solution Chem 50, 723–751 (2021). https://doi.org/10.1007/s10953-021-01076-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01076-5

Keywords

Navigation