Skip to main content

Advertisement

Log in

Thermodynamic Properties of Tricyanomethanide-Based Ionic Liquids with Water: Experimental and Modelling

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Over the last decade, numerous working fluids comprising water and ionic liquid displayed performances close to that of the conventional fluids in absorption heat transformers. The main objective of this work is to determine the thermodynamic properties of {tricyanomethanide based IL + water} mixtures, which are required for simulations in such processes. To do so, isothermal vapor–liquid equilibria (VLE), densities, excess enthalpies and heat capacities of 1-butyl-3-methylimidazolium tricyanomethanide [BMIM][TCM], 1-butyl-4-methylpyridinium tricyanomethanide [BMPY][TCM] and 1-butyl-1-methylpyrrolidinium tricyanomethanide [BMPyr][TCM] with water (H2O) were measured in a large range of temperatures. Excess properties were correlated using the Redlich–Kister equation. This work also aims at confronting models that do not require experimental data, to predict fluids behavior, namely COSMO-SAC and COSMO-RS, and the classical thermodynamic model NRTL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Merkel, N., Bücherl, M., Zimmermann, M., Wagner, V., Schaber, K.: Operation of an absorption heat transformer using water/ionic liquid as working fluid. Appl. Therm. Eng. 131, 370–380 (2018)

    CAS  Google Scholar 

  2. Rivera, W., Best, R., Cardoso, M.J., Romero, R.J.: A review of absorption heat transformers. Appl. Therm. Eng. 91, 654–670 (2015)

    Google Scholar 

  3. Sun, J., Fu, L., Zhang, S.: A review of working fluids of absorption cycles. Renew. Sustain. Energy Rev. 16, 1899–1906 (2012)

    CAS  Google Scholar 

  4. Nowaczyk, U., Steimle, F.: Thermophysical properties of new working fluid systems for absorption processes. Int. J. Refrig. 15, 10–15 (1992)

    CAS  Google Scholar 

  5. Wang, M., Infante Ferreira, C.A.: Absorption heat pump cycles with NH3—ionic liquid working pairs. Appl. Energy 204, 819–830 (2017)

    CAS  Google Scholar 

  6. Zheng, D., Dong, L., Huang, W., Wu, X., Nie, N.: A review of imidazolium ionic liquids research and development towards working pair of absorption cycle. Renew. Sustain. Energy Rev. 37, 47–68 (2014)

    CAS  Google Scholar 

  7. Shiflett, M.B., Yokozeki, A.: Solubility and diffusivity of hydrofluorocarbons in room-temperature ionic liquids. AIChE J. 52, 1205–1219 (2006)

    CAS  Google Scholar 

  8. Wu, W., Zhang, H., You, T., Li, X.: Thermodynamic investigation and comparison of absorption cycles using hydrofluoroolefins and ionic liquid. Ind. Eng. Chem. Res. 56, 9906–9916 (2017)

    CAS  Google Scholar 

  9. Han, X., Yang, Z., Gao, Z., Guan, W., Chen, G.: Isothermal vapor–liquid equilibrium of HFC-161 + DMETrEG within the temperature range of 293.15–353.15 K and comparison for HFC-161 combined with different absorbents. J. Chem. Eng. Data 61, 1321–1327 (2016)

    CAS  Google Scholar 

  10. Papadopoulos, A.I., Kyriakides, A.-S., Seferlis, P., Hassan, I.: Absorption refrigeration processes with organic working fluid mixtures—a review. Renew. Sustain. Energy Rev. 109, 239–270 (2019)

    CAS  Google Scholar 

  11. Seiler, M., Kühn, A., Ziegler, F., Wang, X.: Sustainable cooling strategies using new chemical system solutions. Ind. Eng. Chem. Res. 52, 16519–16546 (2013)

    CAS  Google Scholar 

  12. Wu, W., You, T., Zhang, H., Li, X.: Comparisons of different ionic liquids combined with trans-1,3,3,3-tetrafluoropropene (R1234ze(E)) as absorption working fluids. Int. J. Refrig. 88, 45–57 (2018)

    CAS  Google Scholar 

  13. Chen, W., Liang, S.: Thermodynamic analysis of absorption heat transformers using [mmim]DMP/H2O and [mmim]DMP/CH3OH as working fluids. Appl. Therm. Eng. 99, 846–856 (2016)

    CAS  Google Scholar 

  14. Martín, Á., Bermejo, M.D.: Thermodynamic analysis of absorption refrigeration cycles using ionic liquid + supercritical CO2 pairs. J. Supercrit. Fluid. 55, 852–859 (2010)

    Google Scholar 

  15. Sujatha, I., Venkatarathnam, G.: Comparison of performance of a vapor absorption refrigeration system operating with some hydrofluorocarbons and hydrofluoroolefins as refrigerants along with ionic liquid [hmim][TF2N] as the absorbent. Int. J. Refrig. 88, 370–382 (2018)

    CAS  Google Scholar 

  16. Dong, L., Zheng, D., Nie, N., Li, Y.: Performance prediction of absorption refrigeration cycle based on the measurements of vapor pressure and heat capacity of H2O+[DMIM]DMP system. Appl. Energy 98, 326–332 (2012)

    CAS  Google Scholar 

  17. Abumandour, E.-S., Mutelet, F., Alonso, D.: Performance of an absorption heat transformer using new working binary systems composed of {ionic liquid and water}. Appl. Therm. Eng. 94, 579–589 (2016)

    CAS  Google Scholar 

  18. Zuo, G., Zhao, Z., Yan, S., Zhang, X.: Thermodynamic properties of a new working pair: 1-ethyl-3-methylimidazolium ethylsulfate and water. Chem. Eng. J. 156, 613–617 (2010)

    CAS  Google Scholar 

  19. Zhang, X., Hu, D.: Performance analysis of the single-stage absorption heat transformer using a new working pair composed of ionic liquid and water. Appl. Therm. Eng. 37, 129–135 (2012)

    CAS  Google Scholar 

  20. Takalkar, G.D., Bhosale, R.R., Mali, N.A., Bhagwat, S.S.: Thermodynamic analysis of EMISE–water as a working pair for absorption refrigeration system. Appl. Therm. Eng. 148, 787–795 (2019)

    CAS  Google Scholar 

  21. Abumandour, E.-S., Mutelet, F., Alonso, D.: Are ionic liquids suitable as new components in working mixtures for absorption heat transformers? Prog. Dev. Ion. Liq. (2017). https://doi.org/10.5772/65756

    Article  Google Scholar 

  22. Wang, M., Becker, T.M., Infante Ferreira, C.A.: Assessment of vapor–liquid equilibrium models for ionic liquid based working pairs in absorption cycles. Int. J. Refrig. 87, 10–25 (2018)

    CAS  Google Scholar 

  23. Yang, D., Zhu, Y., Liu, S., Lv, H., Luo, C.: Thermodynamic properties of a ternary AHP working pair: lithium bromide + 1-ethyl-3-methylimidazolium chloride + H2O. J. Chem. Eng. Data 64, 574–583 (2019)

    CAS  Google Scholar 

  24. Luo, C.-H., Wang, Y.-N., Han, X., Li, Y.-Q., Su, Q.-Q.: Density, viscosity, specific heat capacity, and specific enthalpy of a novel ternary working pair: LiBr–[BMIM]Cl/H2O. Gongcheng Kexue Xuebao/Chin. J. Eng. 41, 731–740 (2019)

    Google Scholar 

  25. Luo, C., Wang, Y., Li, Y., Wu, Y., Su, Q., Hu, T.: Thermodynamic properties and application of LiNO3–[MMIM][DMP]/H2O ternary working pair. Renew. Energy 134, 147–160 (2019)

    CAS  Google Scholar 

  26. Lukoshko, E., Mutelet, F., Paduszyński, K., Domańska, U.: Phase diagrams of binary systems containing tricyanomethanide-based ionic liquids and thiophene or pyridine—new experimental data and PC-SAFT modelling. Fluid Phase Equilib. 399, 105–114 (2015)

    CAS  Google Scholar 

  27. Revelli, A.-L., Mutelet, F., Jaubert, J.-N.: (Vapor + liquid) equilibria of binary mixtures containing light alcohols and ionic liquids. J. Chem. Thermodyn. 42, 177–181 (2010)

    CAS  Google Scholar 

  28. Chirico, R.D., Frenkel, M., Magee, J.W., Diky, V., Muzny, C.D., Kazakov, A.F., Kroenlein, K., Abdulagatov, I., Hardin, G.R., Acree, W.E., Brenneke, J.F., Brown, P.L., Cummings, P.T., de Loos, T.W., Friend, D.G., Goodwin, A.R.H., Hansen, L.D., Haynes, W.M., Koga, N., Mandelis, A., Marsh, K.N., Mathias, P.M., McCabe, C., O’Connell, J.P., Pádua, A., Rives, V., Schick, C., Trusler, J.P.M., Vyazovkin, S., Weir, R.D., Wu, J.: Improvement of quality in publication of experimental thermophysical property data: challenges, assessment tools, global implementation, and online support. J. Chem. Eng. Data. 58, 2699–2716 (2013)

    CAS  Google Scholar 

  29. Design Institute for Physical Properties: DIPPR Project, 801 (2019)

  30. Ayad, A., Negadi, A., Mutelet, F.: Carbon dioxide solubilities in tricyanomethanide-based ionic liquids: measurements and PC-SAFT modeling. Fluid Phase Equilib. 469, 48–55 (2018)

    CAS  Google Scholar 

  31. Carvalho, P.J., Regueira, T., Santos, L.M.N.B.F., Fernandez, J., Coutinho, J.A.P.: Effect of water on the viscosities and densities of 1-butyl-3-methylimidazolium dicyanamide and 1-butyl-3-methylimidazolium tricyanomethane at atmospheric pressure. J. Chem. Eng. Data 55, 645–652 (2010)

    CAS  Google Scholar 

  32. Romanos, G.E., Zubeir, L.F., Likodimos, V., Falaras, P., Kroon, M.C., Iliev, B., Adamova, G., Schubert, T.J.S.: Enhanced CO2 capture in binary mixtures of 1-alkyl-3-methylimidazolium tricyanomethanide ionic liquids with water. J. Phys. Chem. B 117, 12234–12251 (2013)

    CAS  PubMed  Google Scholar 

  33. Domańska, U., Lukoshko, E.V.: Measurements of activity coefficients at infinite dilution for organic solutes and water in the ionic liquid 1-butyl-1-methylpyrrolidinium tricyanomethanide. J. Chem. Thermodyn. 66, 144–150 (2013)

    Google Scholar 

  34. Domańska, U., Królikowska, M., Walczak, K.: Density, viscosity and surface tension of binary mixtures of 1-butyl-1-methylpyrrolidinium tricyanomethanide with benzothiophene. J. Solution Chem. 43, 1929–1946 (2014)

    PubMed  PubMed Central  Google Scholar 

  35. Nie, N., Zheng, D., Dong, L., Li, Y.: Thermodynamic properties of the water + 1-(2-hydroxylethyl)-3-methylimidazolium chloride system. J. Chem. Eng. Data 57, 3598–3603 (2012)

    CAS  Google Scholar 

  36. Królikowska, M.: (Solid + liquid) and (liquid + liquid) phase equilibria of (IL + water) binary systems. The influence of the ionic liquid structure on mutual solubility. Fluid Phase Equilib. 361, 273–281 (2014)

    Google Scholar 

  37. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    CAS  Google Scholar 

  38. Stuckenholz, M., Crespo, E.A., Vega, L.F., Carvalho, P.J., Coutinho, J.A.P., Schröer, W., Kiefer, J., Rathke, B.: Vapor liquid equilibria of binary mixtures of 1-butyl-3-methylimidazolium triflate (C4mimTfO) and molecular solvents: n-alkyl alcohols and water. J. Phys. Chem. B 122, 6017–6032 (2018)

    CAS  PubMed  Google Scholar 

  39. Klamt, A., Jonas, V., Bürger, T., Lohrenz, J.C.W.: Refinement and parametrization of COSMO-RS. J. Phys. Chem. A 102, 5074–5085 (1998)

    CAS  Google Scholar 

  40. Pye, C.C., Ziegler, T., van Lenthe, E., Louwen, J.N.: An implementation of the conductor-like screening model of solvation within the Amsterdam density functional package—part II. COSMO for real solvents. Can. J. Chem. 87, 790–797 (2009)

    CAS  Google Scholar 

  41. Lin, S.-T., Sandler, S.I.: A priori phase equilibrium prediction from a segment contribution solvation model. Ind. Eng. Chem. Res. 41, 899–913 (2002)

    CAS  Google Scholar 

  42. Hsieh, C.-M., Sandler, S.I., Lin, S.-T.: Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions. Fluid Phase Equilib. 297, 90–97 (2010)

    CAS  Google Scholar 

  43. Freire, M.G., Ventura, S.P.M., Santos, L.M.N.B.F., Marrucho, I.M., Coutinho, J.A.P.: Evaluation of COSMO-RS for the prediction of LLE and VLE of water and ionic liquids binary systems. Fluid Phase Equilib. 268, 74–84 (2008)

    CAS  Google Scholar 

  44. Yang, L., Sandler, S.I., Peng, C., Liu, H., Hu, Y.: Prediction of the phase behavior of ionic liquid solutions. Ind. Eng. Chem. Res. 49, 12596–12604 (2010)

    CAS  Google Scholar 

  45. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, E.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J., Gaussian 09 ed., Gaussian, Inc., Wallingford, CT (2009)

  46. Diedenhofen, M., Klamt, A.: COSMO-RS as a tool for property prediction of IL mixtures—a review. Fluid Phase Equilib. 294, 31–38 (2010)

    CAS  Google Scholar 

  47. Chaban, V.V.: The tricyanomethanide anion favors low viscosity of the pure ionic liquid and its aqueous mixtures. Phys. Chem. Chem. Phys. 17, 31839–31849 (2015)

    CAS  PubMed  Google Scholar 

  48. Klamt, A., Eckert, F.: COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids. Fluid Phase Equilib. 172, 43–72 (2000)

    CAS  Google Scholar 

  49. Cai, G., Yang, S., Wang, X., Zhou, Q., Xu, J., Lu, X.: Densities and viscosities of binary mixtures containing the polyhydric protic ionic liquid(2-hydroxy-N-(2-hydroxyethyl)-N-methylethanaminium methanesulfonate) and water or alcohols. J. Solution Chem. 49, 423–457 (2020)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Mutelet.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 64 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayad, A., Di Pietro, T., Mutelet, F. et al. Thermodynamic Properties of Tricyanomethanide-Based Ionic Liquids with Water: Experimental and Modelling. J Solution Chem 50, 517–543 (2021). https://doi.org/10.1007/s10953-021-01072-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01072-9

Keywords

Navigation