Skip to main content
Log in

Effects of Water Content on Physicochemical Properties of a Protic Ionic Liquid with Monoprotic N-Hexylethylenediaminium as Cation and Bis(trifluoromethylsulfonyl) Imide as Anion

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The effects of water content on physicochemical properties such as density, dynamic viscosity, and electrical conductivity of HHexen(Tf2N), composed of monoprotic N-hexylethylenediaminium as cation and bis(trifluoromethylsulfonyl) imide as anion, were studied in the temperature range T = 303.15–353.15 K. HHexen(Tf2N) was dissolved a small amount of water (up to 6.53 wt%, corresponding to w0 = [H2O]/[PIL] = 1.65) as it is a hydrophobic protic ionic liquid (PIL). The physicochemical properties of HHexen(Tf2N) were significantly influenced by its water content. The temperature dependence of the physicochemical properties at different water contents (0.50 wt%, 0.95%, 1.93%, 3.02%, 4.03%, 5.14% and 5.95%, corresponding to w0 = 0.12, 0.23, 0.47, 0.74, 1.0, 1.28 and 1.50, respectively) were studied. With an increase in the water content, the density and dynamic viscosity decreases while the electric conductivity increases in a given temperature range. The Walden lines of HHexen(Tf2N) show a good ionic character as the curves are all located in the range of ΔW = 0.5 ± 0.2 (ΔW = log101/η −log10 Λ) at different water contents. The ionicity shows an increasing trend with an increase of water content; this is evident when the water content rises to approximately 4.0% (w0 = 1.0). Additionally, HHexen(Tf2N) was used to extract Co(II) ions from an aqueous solution. Inductive coupled plasma emission spectrometry results showed that more than 99.5 wt% of Co(II) ions moved from the 100 mmol·kg−1 aqueous layer to the HHexen(Tf2N) layer (of equal volume). After extraction of the Co(II) ions, the PIL layer contained 7.90% of water (w0 = 2.0).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Scheme 2

Similar content being viewed by others

References

  1. Patil, A.B., Mahadeo, B.B.: Brønsted acidity of protic ionic liquids: a modern ab initio valence bond theory perspective. Phys. Chem. Chem. Phys. 18, 26020–26025 (2016)

    Article  CAS  Google Scholar 

  2. Piekart, J., Łuczak, J.: Transport properties of aqueous ionic liquid microemulsions: influence of the anion type and presence of the co-surfactant. Soft Matter 11, 8992–9008 (2015)

    Article  CAS  Google Scholar 

  3. Ullah, Z., Bustam, M.A., Man, Z., Muhammad, N., Khan, A.S.: Synthesis, characterization and the effect of temperature on different physicochemical properties of protic ionic liquids. RSC Adv. 5, 71449–71461 (2015)

    Article  CAS  Google Scholar 

  4. Jacquemin, J., Husson, P., Padua, A.A.H., Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8, 172–180 (2006)

    Article  CAS  Google Scholar 

  5. Cohen, D.T., Zhang, C., Fadzen, M., Mijalis, A.J., Hie, L., Johnson, K.D., Shriver, Z., Plante, O., Miller, S.J., Buchwald, S.L., Pentelute, B.L.: A chemoselective strategy for late-stage functionalization of complex small molecules with polypeptides and proteins. Nat. Chem. 11, 78–85 (2019)

    Article  CAS  Google Scholar 

  6. Singh, A.P., Gardas, R., Senapati, S.: How water manifests the structural regimes in ionic liquids. Soft Matter 13, 2348–2361 (2017)

    Article  Google Scholar 

  7. He, Z., Alexandridis, P.: Nanoparticles in ionic liquids: interactions and organization. Phys. Chem. Chem. Phys. 17, 18238–18261 (2015)

    Article  CAS  Google Scholar 

  8. Wippermann, K., Giffin, J., Kuhri, S., Lehnert, W., Korte, C.: The influence of water content in a proton-conducting ionic liquid on the double layer properties of the Pt/PIL Interface. Phys. Chem. Chem. Phys. 19, 24706–24723 (2017)

    Article  CAS  Google Scholar 

  9. Singh, A.P., Gardas, R., Senapati, S.: Divergent trend in density versus viscosity of ionic liquid/water mixtures: a molecular view from guanidinium ionic liquids. Phys. Chem. Chem. Phys. 17, 25037–25048 (2015)

    Article  CAS  Google Scholar 

  10. Walst, K.J., Yunis, R., Bayley, P.M., MacFarlane, D.R., Ward, C.J., Wang, R., Curnow, O.J.: Synthesis and physical properties of tris(dialkylamino)cyclopropenium bistriflamide ionic liquids. RSC Adv. 5, 39565–39579 (2015)

    Article  CAS  Google Scholar 

  11. Er, H., Xu, Y., Zhao, H.: Properties of mono-protic ionic liquids composed of hexylammonium and hexylethylenediaminium cations with trifluoroacetate and bis(trifluoromethylsulfonyl) imide anions. J. Mol. Liq. 276, 379–384 (2019)

    Article  CAS  Google Scholar 

  12. Walden, P.: Molecular weights and electrical conductivity of several fused salts. Bull. Acad. Sci. St. Petersburg 1800, 405–422 (1914)

    Google Scholar 

  13. Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)

    Article  CAS  Google Scholar 

  14. Kellkar, M.S., Maginn, E.J.: Effect of temperature and water content on the shear viscosity of the ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide as studied by atomistic simulations. J. Phys. Chem. B 18, 4867–4876 (2007)

    Article  Google Scholar 

  15. Takemura, S., Kawakami, S., Harada, M., Iida, M.: Solvation structure of a copper(II) ion in protic ionic liquids comprising N-hexylethylenediamine. Inorg. Chem. 53, 9667–9678 (2014)

    Article  CAS  Google Scholar 

  16. Watanabe, M., Nakayama, C., Yasuda, H., Harada, M., Iida, M.: Interactions of nickel(II) ions in protic ionic liquids comprising N-hexyl(or N-2-ethtylhexyl)ethylenediamines. J. Mol. Liq. 214, 77–85 (2016)

    Article  CAS  Google Scholar 

  17. Grishina, E.P., Ramenskaya, L.M., Gruzdev, M.S., Kraeva, O.V.: Water effect on physicochemical properties of 1-butyl-3-methylimidazolium based ionic liquids with inorganic anions. J. Mol. Liq. 117, 267–272 (2013)

    Article  Google Scholar 

  18. Watanabe, M., Takemura, S., Kawakami, S., Syouno, E., Kurosu, H., Harada, M., Iida, M.: Sites of protonation and copper(II) complexation in protic ionic liquids comprised of N-hexylethylenediaminium cation. J. Mol. Liq. 183, 50–58 (2013)

    Article  CAS  Google Scholar 

  19. Bruno, A.J., Chaberek, S., Martell, A.E.: The preparation and properties of N-substituted ethylenediaminetriacetic acids. J. Am. Chem. Soc. 12, 2723–2728 (1956)

    Article  Google Scholar 

  20. Iida, M., Kawakami, S., Syouno, E.: Hua, Er: properties of ionic liquids containing silver(I) or protic alkylethylenediamine cations with a bis(trifluoromethanesulfonyl) amide anion. J. Colloid Interface Sci. 356, 630–638 (2011)

    Article  CAS  Google Scholar 

  21. Er, H., Wang, H.: Properties of protic ionic liquids composed of N-alkyl (= hexyl, octyl and 2-ethylhexyl) ethylenediaminum cations with trifluoromethanesulfonate and trifluoroacetate anion. J. Mol. Liq. 220, 649–656 (2016)

    Article  CAS  Google Scholar 

  22. Dupont, J.: On the solid, liquid and solution structural organization of imidazolium ionic liquids. J. Braz. Chem. Soc. 15, 341–350 (2004)

    Article  CAS  Google Scholar 

  23. Zhang, Q.G., Li, Q., Liu, D., Zhang, X.Y., Lang, X.S.: Density, dynamic viscosity, electrical conductivity, electrochemical potential window, and excess properties of ionic liquid N-butyl-pyridinium dicyanamide and binary system with propylene carbonate. J. Mol. Liq. 249, 1097–1106 (2018)

    Article  CAS  Google Scholar 

  24. Oswal, S.L., Desai, H.S.: Studies of viscosity and excess molar volume of binary mixtures 2. Butylamine + 1-alkanol mixtures at 303.15 and 313.15 K. Fluid Phase Equilib. 161, 191–204 (1999)

    Article  CAS  Google Scholar 

  25. Das, D., Messaâdi, A., Barhoumi, Z., Ouerfelli, N.: The relative reduced Redlich–Kister equations for correlating excess properties of N,N-dimethylacetamide + water binary mixtures at temperatures from 298.15 K to 318.15 K. J. Solution Chem. 41, 1555–1574 (2012)

    Article  CAS  Google Scholar 

  26. Liu, Z., Hua, Er, Liu, R., Ji, J.L.: Water effects on physicochemical properties of protic ionic liquid with N-hexylamine as cation and bis(trifluoromethylsulfonyl) imide as anion. Chem. Ind. Eng. Prog. (2020). https://doi.org/10.16085/j.issn.1000-6613.2020-0940

    Article  Google Scholar 

  27. Xu, W., Cooper, E.I., Angell, C.A.: Ionic liquids: ion mobilities, glass temperatures, and fragilities. J. Phys. Chem. B 25, 6170–6178 (2003)

    Article  Google Scholar 

  28. Xu, W., Angell, C.A.: Solvent-free electrolytes with aqueous solution-like conductivities. Science 302, 422–425 (2003)

    Article  CAS  Google Scholar 

  29. Liu, Q.S., Liu, J., Liu, X.X., Zhang, S.T.: Density, dynamic viscosity, and electrical conductivity of two hydrophobic functionalized ionic liquids. J. Chem. Thermodyn. 90, 39–45 (2015)

    Article  CAS  Google Scholar 

  30. Schreiner, C., Zugmann, S., Hartl, R., Gores, H.J.: Fractional Walden rule for ionic liquids: examples from recent measurements and a critique of the so-called ideal KCl line for the Walden plot. J. Chem. Eng. Data 5, 1784–1788 (2010)

    Article  Google Scholar 

  31. Iida, M., Baba, C., Inoue, M., Yoshida, H., Taguchi, E., Furusho, H.: Ionic liquids of bis(alkylethylenediamine)silver(I) salts and the formation of silver(0) nanoparticles from the ionic liquid system. Chem. Eur. J. 14, 5047–5056 (2008)

    Article  CAS  Google Scholar 

  32. MacFarlane, D.R., Forsyth, M., Izgorodin, E.I.A., Abbot, A.P., Annat, G., Fraser, K.: On the concept of ionicity in ionic liquid. Phys. Chem. Chem. Phys. 11, 4962–4967 (2009)

    Article  CAS  Google Scholar 

  33. Liu, Q.S., Li, P.P., Welz-Biermann, U., Chen, J., Liu, X.X.: Density, dynamic viscosity and electrical conductivity of pyridinium-based hydrophobic ionic liquids. J. Chem. Thermodyn. 66, 88–94 (2013)

    Article  Google Scholar 

  34. Yoshizawa, M., Xu, W., Angell, C.A.: Ionic liquids by proton transfer: vapor pressure, conductivity, and the relevance of ΔpKa from aqueous solutions. J. Am. Chem. Soc. 125, 15411–15419 (2003)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Foundation of Ningxia Higher Education (Project Number: NGY2020063). We are also grateful to Prof. Masayasu Iida of Nara Women’s University for the helpful discussion. We would like to thank Editage (www.editage.com) for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Er Hua.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, E., Liu, Z. & Qin, L. Effects of Water Content on Physicochemical Properties of a Protic Ionic Liquid with Monoprotic N-Hexylethylenediaminium as Cation and Bis(trifluoromethylsulfonyl) Imide as Anion. J Solution Chem 50, 503–516 (2021). https://doi.org/10.1007/s10953-021-01067-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01067-6

Keywords

Navigation