Abstract
Proteins are one the most widely studied biomolecules with diverse functions and applications. Aiming at overcoming the current drawbacks of purification processes of proteins, the introduction of ionic liquids (ILs) has been a hot topic of research. ILs have been applied in the creation of aqueous biphasic systems (IL-based ABS), solid-phase extractions through poly(ionic liquid)s (PILs) and supported ionic-liquid phases (SILPs), and in the crystallization of proteins. In this sense, ILs have emerged as solvents, electrolytes or adjuvants, or as supported materials to tune the adsorption/affinity capacity aiming at developing an efficient, cost-effective, sustainable and green IL-based process for protein extraction. This review discusses different IL-based processes in the extraction and purification of proteins in the past years, namely IL-based aqueous biphasic systems (IL-based ABS), solid-phase extractions through PILs and SILPs, and protein crystallization. The type and structure of ILs applied and their influence in the different processes performance are also discussed.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., Walter, P.: Proteins function. In: Molecular Biology of the Cell. Garland Science, New York (2002)
Rabert, C., Weinacker, D., Pessoa, A., Jr., Farías, J.G.: Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Braz. J. Microbiol. 44, 351–356 (2013). https://doi.org/10.1590/S1517-83822013005000041
Lee, S.Y., Khoiroh, I., Chien Wei, O., Ling, T., Pau Loke, S.: Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep. Purif. Rev. 46, 291–304 (2017). https://doi.org/10.1080/15422119.2017.1279628
Ventura, S.P.M., e Silva, F.A., Quental, M.V., Mondal, D., Freire, M.G., Coutinho, J.A.P.: Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem. Rev. 117, 6984–7052 (2017). https://doi.org/10.1021/acs.chemrev.6b00550
Seddon, K.R.: Ionic Liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4%3c351::AID-JCTB613%3e3.0.CO;2-4
Naushad, M., ALOthman, Z.A., Khan, A.B., Ali, M.: Effect of ionic liquid on activity, stability, and structure of enzymes: areview. Int. J. Biol. Macromol. 51, 555–560 (2012). https://doi.org/10.1016/j.ijbiomac.2012.06.020
Zhang, J., Hu, B.: Liquid Liquid extraction (LLE). In: Separation and Purification Technologies in Biorefineries, pp. 61–78 (2013). https://doi.org/10.1002/9781118493441.ch3
Freire, M.G., Cláudio, A.F.M., Araújo, J.M.M., Coutinho, J.P., Marrucho, I.M., Lopes, J.N.C., Rebelo, L.P.N.: Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem. Soc. Rev. 41, 4966–4995 (2012). https://doi.org/10.1039/c2cs35151j
Castro, L., Pereira, P., Freire, M., Pedro, A.: Progress in the development of aqueous two-phase systems comprising ionic liquids for the downstream processing of protein-based biopharmaceuticals. Am. Pharm. Rev. 1–6 (2019)
McQueen, L., Lai, D.: Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. Front. Chem. 7, 135 (2019). https://doi.org/10.3389/fchem.2019.00135
Pereira, M.M., Pedro, S.N., Quental, M.V., Lima, Á.S., Coutinho, J.A.P., Freire, M.G.: Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. J. Biotechnol. 206, 17–25 (2015). https://doi.org/10.1016/j.jbiotec.2015.03.028
Wang, Z., Pei, Y., Zhao, J., Li, Z., Chen, Y., Zhuo, K.: Formation of ether-functionalized ionic-liquid-based aqueous two-phase systems and their application in separation of protein and saccharides. J. Phys. Chem. B 119, 4471–4478 (2015). https://doi.org/10.1021/jp510984d
Čížová, A., Korcová, J., Farkaš, P., Bystrický, S.: Efficient separation of mannan–protein mixtures by ionic liquid aqueous two-phase system, comparison with lectin affinity purification. Int. J. Biol. Macromol. 98, 314–318 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.001
Jiang, B., Feng, Z., Liu, C., Xu, Y., Li, D., Ji, G.: Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt. J. Food Sci. Technol. 52, 2878–2885 (2015). https://doi.org/10.1007/s13197-014-1319-5
Santos, J.H.P.M., Trigo, J.P., Maricato, É., Nunes, C., Coimbra, M.A., Ventura, S.P.M.: Fractionation of isochrysis galbana proteins, arabinans, and glucans using ionic-liquid-based aqueous biphasic systems. ACS Sustain. Chem. Eng. 6, 14042–14053 (2018). https://doi.org/10.1021/acssuschemeng.8b02597
Santos, J.H.P.M., e Silva, F.A., Coutinho, J.A.P., Ventura, S.P.M., Pessoa, A.: Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochem. 50, 661–668 (2015). https://doi.org/10.1016/j.procbio.2015.02.001
Vahidnia, M., Pazuki, G., Abdolrahimi, S.: Impact of polyethylene glycol as additive on the formation and extraction behavior of ionic-liquid based aqueous two-phase system. AIChE J. 62, 264–274 (2015). https://doi.org/10.1002/aic.15035
Quental, M.V., Caban, M., Pereira, M.M., Stepnowski, P., Coutinho, J.A.P., Freire, M.G.: Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems. Biotechnol. J. 10, 1457–1466 (2015). https://doi.org/10.1002/biot.201500003
Song, C.P., Ramanan, R.N., Vijayaraghavan, R., MacFarlane, D.R., Chan, E.-S., Ooi, C.-W.: Green, aqueous two-phase systems based on cholinium aminoate ionic liquids with tunable hydrophobicity and charge density. ACS Sustain. Chem. Eng. 3, 3291–3298 (2015). https://doi.org/10.1021/acssuschemeng.5b00881
Taha, M., Quental, M.V., Correia, I., Freire, M.G., Coutinho, J.A.P.: Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good’s buffers ionic liquids. Process Biochem. 50, 1158–1166 (2015). https://doi.org/10.1016/j.procbio.2015.03.020
Gupta, B.S., Taha, M., Lee, M.-J.: Extraction of an active enzyme by self-buffering ionic liquids: a green medium for enzymatic research. RSC Adv. 6, 18567–18576 (2016). https://doi.org/10.1039/C6RA00607H
Gupta, B.S., Taha, M., Lee, M.-J.: Self-buffering and biocompatible ionic liquid based biological media for enzymatic research. RSC Adv. 5, 106764–106773 (2015). https://doi.org/10.1039/C5RA16317J
Lee, S.Y., Vicente, F.A., e Silva, F.A., Sintra, T.E., Taha, M., Khoiroh, I., Coutinho, J.A.P., Show, P.L., Ventura, S.P.M.: Evaluating self-buffering ionic liquids for biotechnological applications. ACS Sustain. Chem. Eng. 3, 3420–3428 (2015). https://doi.org/10.1021/acssuschemeng.5b01155
Lee, S.Y., Khoiroh, I., Coutinho, J.A.P., Show, P.L., Ventura, S.P.M.: Lipase production and purification by self-buffering ionic liquid-based aqueous biphasic systems. Process Biochem. 63, 221–228 (2017). https://doi.org/10.1016/j.procbio.2017.08.020
Souza, R.L., Lima, R.A., Coutinho, J.A.P., Soares, C.M.F., Lima, Á.S.: Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Sep. Purif. Technol. 155, 118–126 (2015). https://doi.org/10.1016/j.seppur.2015.05.021
Souza, R.L., Ventura, S.P.M., Soares, C.M.F., Coutinho, J.A.P., Lima, Á.S.: Lipase purification using ionic liquids as adjuvants in aqueous two-phase systems. Green Chem. 17, 3026–3034 (2015). https://doi.org/10.1039/C5GC00262A
Suarez Ruiz, C.A., van den Berg, C., Wijffels, R.H., Eppink, M.H.M.: Rubisco separation using biocompatible aqueous two-phase systems. Sep. Purif. Technol. 196, 254–261 (2018). https://doi.org/10.1016/j.seppur.2017.05.001
Taha, M., Almeida, M.R., Silva, F.A.E., Domingues, P., Ventura, S.P.M., Coutinho, J.A.P., Freire, M.G.: Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications. Chemistry 21, 4781–4788 (2015). https://doi.org/10.1002/chem.201405693
Mondal, D., Sharma, M., Quental, M.V., Tavares, A.P.M., Prasad, K., Freire, M.G.: Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. Green Chem. 18, 6071–6081 (2016). https://doi.org/10.1039/C6GC01482H
Ramalho, C.C., Neves, C.M.S.S., Quental, M. V, Coutinho, J.A.P., Freire, M.G.: Separation of immunoglobulin G using aqueous biphasic systems composed of cholinium-based ionic liquids and poly(propylene glycol). J. Chem. Technol. Biotechnol. 93, 1931–1939 (2018)
Capela, E.V., Santiago, A.E., Rufino, A.F.C.S., Tavares, A.P.M., Pereira, M.M., Mohamadou, A., Aires-Barros, M.R., Coutinho, J.A.P., Azevedo, A.M., Freire, M.G.: Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chem. 21, 5671–5682 (2019). https://doi.org/10.1039/C9GC02733E
Vicente, F.A., Bairos, J., Roque, M., Coutinho, J.A.P., Ventura, S.P.M., Freire, M.G.: Use of ionic liquids as cosurfactants in mixed aqueous micellar two-phase systems to improve the simultaneous separation of immunoglobulin G and human serum albumin from expired human plasma. ACS Sustain. Chem. Eng. 7, 15102–15113 (2019). https://doi.org/10.1021/acssuschemeng.9b03841
Passos, H., Luís, A., Freire, M.: Thermoreversible (ionic-liquid-based) aqueous biphasic systems. Sci. Rep. 6, 20276 (2016). https://doi.org/10.1038/srep20276
Belchior, D.C.V., Quental, M.V., Pereira, M.M., Mendonça, C.M.N., Duarte, I.F., Freire, M.G.: Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Sep. Purif. Technol. 233, 116019 (2020). https://doi.org/10.1016/j.seppur.2019.116019
Du, Z., Yu, Y.-L., Wang, J.-H.: Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-Phase system. Chem. A Eur. J. 13, 2130–2137 (2007). https://doi.org/10.1002/chem.200601234
Dreyer, S., Salim, P., Kragl, U.: Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem. Eng. J. 46, 176–185 (2009). https://doi.org/10.1016/j.bej.2009.05.005
Pei, Y., Wang, J., Wu, K., Xuan, X., Lu, X.: Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep. Purif. Technol. 64, 288–295 (2009). https://doi.org/10.1016/j.seppur.2008.10.010
Yuanchao, P., Li, Z., Liu, L., Wang, J., Wang, H.: Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci. China Chem. 53, 1554–1560 (2010). https://doi.org/10.1007/s11426-010-4025-9
Lin, X., Wang, Y., Zeng, Q., Ding, X., Chen, J.: Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst. 138, 6445–6453 (2013). https://doi.org/10.1039/C3AN01301D
Lehotay, S.J., Schenck, F.J.: Multiresidue methods: extraction. In: Encyclopedia of Separation Science, pp. 3409–3415. Elsevier (2000). https://doi.org/10.1016/b0-12-226770-2/05621-0
Keçili, R., Büyüktiryaki, S., Dolak, I., Hussain, C.M.: The use of magnetic nanoparticles in sample preparation devices and tools. Handb. Nanomater. Anal. Chem. Mod. Trends Anal. 75–95 (2019). https://doi.org/10.1016/B978-0-12-816699-4.00005-0
Yuan, S., Deng, Q., Fang, G., Pan, M., Zhai, X., Wang, S.: A novel ionic liquid polymer material with high binding capacity for proteins. J. Mater. Chem. 22, 3965–3972 (2012). https://doi.org/10.1039/c2jm14577d
Chen, J., Wang, Y., Ding, X., Huang, Y., Xu, K.: Magnetic solid-phase extraction of proteins based on hydroxy functional ionic liquid-modified magnetic nanoparticles. Anal. Methods 6, 8358–8367 (2014). https://doi.org/10.1039/c4ay01786b
Fontanals, N., Borrull, F., Marcé, R.M.: Ionic liquids in solid-phase extraction. TrAC - Trends Anal. Chem. 41, 15–26 (2012). https://doi.org/10.1016/j.trac.2012.08.010
Mecerreyes, D.: Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36, 1629–1648 (2011). https://doi.org/10.1016/j.progpolymsci.2011.05.007
Lu, J., Yan, F., Texter, J.: Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 34, 431–448 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.001
Dang, M., Deng, Q., Fang, G., Zhang, D., Liu, J., Wang, S.: Preparation of novel anionic polymeric ionic liquid materials and their potential application to protein adsorption. J. Mater. Chem. B. 5, 6339–6347 (2017). https://doi.org/10.1039/c7tb01234a
Shaplov, A.S., Lozinskaya, E.I., Vygodskii, Y.S.: Polymer ionic liquids: synthesis, design and application in electrochemistry as ion conducting materials. In: Torriero, A.A.J., Shiddiky, M. (eds.) Electrochemical Properties and Applications of Ionic Liquids, pp. 203–298. Nova Science Publishers Inc. (2010)
Jia, X., Hu, X., Wang, W., Du, C.: Non-covalent loading of ionic liquid-functionalized nanoparticles for bovine serum albumin: Experiments and theoretical analysis. RSC Adv. 9, 19114–19120 (2019). https://doi.org/10.1039/c9ra02265a
Liu, Y., Ma, R., Deng, Q., Zhang, L., Liu, C., Wang, S.: Preparation of ionic liquid polymer materials and their recognition properties for proteins. RSC Adv. 4, 52147–52154 (2014). https://doi.org/10.1039/c4ra05713a
Qian, L., Yang, M., Chen, H., Xu, Y., Zhang, S., Zhou, Q., He, B., Bai, Y., Song, W.: Preparation of a poly(ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 218, 154–162 (2019). https://doi.org/10.1016/j.carbpol.2019.04.081
Shu, Y., Chen, X.W., Wang, J.H.: Ionic liquid-polyvinyl chloride ionomer for highly selective isolation of basic proteins. Talanta 81, 637–642 (2010). https://doi.org/10.1016/j.talanta.2009.12.059
Wei, Y., Li, Y., Tian, A., Fan, Y., Wang, X.: Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity. J. Mater. Chem. B 1, 2066–2071 (2013). https://doi.org/10.1039/c3tb00576c
Zhao, G., Chen, S., Chen, X.W., He, R.H.: Selective isolation of hemoglobin by use of imidazolium-modified polystyrene as extractant. Anal. Bioanal. Chem. 405, 5353–5358 (2013). https://doi.org/10.1007/s00216-013-6889-y
Wang, X.F., Zhang, Y., Shu, Y., Chen, X.W., Wang, J.H.: Ionic liquid poly(3-n-dodecyl-1-vinylimidazolium) bromide as an adsorbent for the sorption of hemoglobin. RSC Adv. 5, 31496–31501 (2015). https://doi.org/10.1039/c5ra00036j
Kohno, Y., Gin, D.L., Noble, R.D., Ohno, H.: A thermoresponsive poly(ionic liquid) membrane enables concentration of proteins from aqueous media. Chem. Commun. 52, 7497–7500 (2016). https://doi.org/10.1039/c6cc02703b
Liu, C., Deng, Q., Fang, G., Huang, X., Wang, S.: Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins. J. Mater. Chem. B. 2, 5229–5237 (2014). https://doi.org/10.1039/c4tb00663a
Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–2376 (2001). https://doi.org/10.1126/science.291.5512.2370
Jones, C.J., Larive, C.K.: Carbohydrates: Cracking the glycan sequence code. Nat. Chem. Biol. 7, 758–759 (2011). https://doi.org/10.1038/nchembio.696
Hekmat, D., Hebel, D., Joswig, S., Schmidt, M., Weuster-Botz, D.: Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotechnol. Lett. 29, 1703–1711 (2007). https://doi.org/10.1007/s10529-007-9456-9
Judge, R.A., Takahashi, S., Longenecker, K.L., Fry, E.H., Abad-Zapatero, C., Chiu, M.L.: The effect of ionic liquids on protein crystallization and X-ray diffraction resolution. Cryst. Growth Des. 9, 3463–3469 (2009). https://doi.org/10.1021/cg900140b
Xiao, H., Dang, L., Wang, Z.: Crystal morphology and molecular interaction of lysozyme affected by imidazolium-based ionic liquids in aqueous solutions. In: 5th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–5. IEEE (2011). https://doi.org/10.1109/icbbe.2011.5780030
Bonĥte, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996). https://doi.org/10.1021/ic951325x
Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L., Binnemans, K.: Polynuclear metal complexes obtained from the task-specific ionic liquid betainium bistriflimide. Cryst. Growth Des. 8, 1353–1363 (2008). https://doi.org/10.1021/cg701187t
Wang, Z., Fang, W., Li, Y., Zhang, J., Gu, Q.: A new strategy for protein crystallization: effect of ionic liquids on lysozyme crystallization and morphology. Korean J. Chem. Eng. 31, 919–923 (2014). https://doi.org/10.1007/s11814-014-0057-8
Yu, X., Tian, N., Huang, F., Huang, X., Liu, C., Gao, S., Yang, Z., Wu, Y.: Evaluating the role of ionic liquids (ILs) in the crystallization of lysozyme. J. Mol. Liq. 296, 112018 (2019). https://doi.org/10.1016/j.molliq.2019.112018
Garlitz, J.A., Summers, C.A., Flowers, R.A., Borgstahl, G.E.O.: Ethylammonium nitrate: a protein crystallization reagent. Acta Crystallogr. D 55, 2037–2038 (1999). https://doi.org/10.1107/S0907444999011774
Li, X., Xu, X., Dan, Y., Feng, J., Ge, L., Zhang, M.: The crystallization of lysozyme in the system of ionic liquid [BMIm][BF4]–water. Cryst. Res. Technol. 43, 1062–1068 (2008). https://doi.org/10.1002/crat.200800040
Li, X.X., Xu, X.D., Dan, Y.Y., Zhang, M.L.: The crystallization of lysozyme and thaumatin with ionic liquid. Crystallogr. Rep. 54, 1285–1288 (2009). https://doi.org/10.1134/S1063774509070268
Chen, X., Ji, Y., Wang, J.: Improvement on the crystallization of lysozyme in the presence of hydrophilic ionic liquid. Analyst 135, 2241–2248 (2010). https://doi.org/10.1039/c0an00244e
Kennedy, D.F., Drummond, C.J., Peat, T.S., Newman, J.: Evaluating protic ionic liquids as protein crystallization additives. Cryst. Growth Des. 11, 1777–1785 (2011). https://doi.org/10.1021/cg1017104
Kowacz, M., Mukhopadhyay, A., Carvalho, A.L., Esperança, J.M.S.S., Romão, M.J., Rebelo, L.P.N.: Hofmeister effects of ionic liquids in protein crystallization: direct and water-mediated interactions. CrystEngComm 14, 4912–4921 (2012). https://doi.org/10.1039/c2ce25129a
Kowacz, M., Marchel, M., Juknaite, L., Esperança, J.M.S.S., Romão, M.J., Carvalho, A.L., Rebelo, L.P.N.: Ionic-liquid-functionalized mineral particles for protein crystallization. Cryst. Growth 15, 2994–3003 (2015). https://doi.org/10.1021/acs.cgd.5b00403
Belviso, B.D., Caliandro, R., Salehi, S.M., Di Profio, G., Caliandro, R.: Protein crystallization in ionic-liquid hydrogel composite membranes. Crystals 9, 253 (2019). https://doi.org/10.3390/cryst9050253
Pusey, M.L., Paley, M.S., Turner, M.B., Rogers, R.D.: Protein crystallization using room temperature ionic liquids. Cryst. Growth Des. 7, 787–793 (2007). https://doi.org/10.1021/cg060696t
Wang, Z., Wang, Q., Dang, L.: Ionic liquids as selectors for controlling the crystallization nucleation of hen egg white lysozyme. Biotechnol. Bioprocess Eng. 17, 1025–1030 (2012). https://doi.org/10.1007/s12257-012-0096-0
Acknowledgements
This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. This work was financially supported by Associate Laboratory LSRE-LCM- UID/EQU/50020/2020 – financed by national funds through FCT/MCTES (PIDDAC) and POCI-01-0145-FEDER-031268 – funded by FEDER, through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES. João C. F. Nunes acknowledges SPQ and FCT for the PhD fellowship (SFRH/BD/150671/2020). Ana P. M. Tavares acknowledges the FCT Investigator Programme and Exploratory Project (IF/01634/2015) with financing from the European Social Fund and the Human Potential Operational Programme, and Márcia C. Neves acknowledges the research contract CEECIND/00383/2017.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Nunes, J.C.F., Almeida, M.R., Faria, J.L. et al. Overview on Protein Extraction and Purification Using Ionic-Liquid-Based Processes. J Solution Chem 51, 243–278 (2022). https://doi.org/10.1007/s10953-021-01062-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-021-01062-x