Skip to main content
Log in

Overview on Protein Extraction and Purification Using Ionic-Liquid-Based Processes

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Proteins are one the most widely studied biomolecules with diverse functions and applications. Aiming at overcoming the current drawbacks of purification processes of proteins, the introduction of ionic liquids (ILs) has been a hot topic of research. ILs have been applied in the creation of aqueous biphasic systems (IL-based ABS), solid-phase extractions through poly(ionic liquid)s (PILs) and supported ionic-liquid phases (SILPs), and in the crystallization of proteins. In this sense, ILs have emerged as solvents, electrolytes or adjuvants, or as supported materials to tune the adsorption/affinity capacity aiming at developing an efficient, cost-effective, sustainable and green IL-based process for protein extraction. This review discusses different IL-based processes in the extraction and purification of proteins in the past years, namely IL-based aqueous biphasic systems (IL-based ABS), solid-phase extractions through PILs and SILPs, and protein crystallization. The type and structure of ILs applied and their influence in the different processes performance are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Bruce, A., Alexander, J., Julian, L., Martin, R., Keith, R., Walter, P.: Proteins function. In: Molecular Biology of the Cell. Garland Science, New York (2002)

  2. Rabert, C., Weinacker, D., Pessoa, A., Jr., Farías, J.G.: Recombinants proteins for industrial uses: utilization of Pichia pastoris expression system. Braz. J. Microbiol. 44, 351–356 (2013). https://doi.org/10.1590/S1517-83822013005000041

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lee, S.Y., Khoiroh, I., Chien Wei, O., Ling, T., Pau Loke, S.: Recent advances in protein extraction using ionic liquid-based aqueous two-phase systems. Sep. Purif. Rev. 46, 291–304 (2017). https://doi.org/10.1080/15422119.2017.1279628

    Article  Google Scholar 

  4. Ventura, S.P.M., e Silva, F.A., Quental, M.V., Mondal, D., Freire, M.G., Coutinho, J.A.P.: Ionic-liquid-mediated extraction and separation processes for bioactive compounds: past, present, and future trends. Chem. Rev. 117, 6984–7052 (2017). https://doi.org/10.1021/acs.chemrev.6b00550

    Article  PubMed  PubMed Central  Google Scholar 

  5. Seddon, K.R.: Ionic Liquids for clean technology. J. Chem. Technol. Biotechnol. 68, 351–356 (1997). https://doi.org/10.1002/(SICI)1097-4660(199704)68:4%3c351::AID-JCTB613%3e3.0.CO;2-4

    Article  Google Scholar 

  6. Naushad, M., ALOthman, Z.A., Khan, A.B., Ali, M.: Effect of ionic liquid on activity, stability, and structure of enzymes: areview. Int. J. Biol. Macromol. 51, 555–560 (2012). https://doi.org/10.1016/j.ijbiomac.2012.06.020

    Article  PubMed  Google Scholar 

  7. Zhang, J., Hu, B.: Liquid Liquid extraction (LLE). In: Separation and Purification Technologies in Biorefineries, pp. 61–78 (2013). https://doi.org/10.1002/9781118493441.ch3

  8. Freire, M.G., Cláudio, A.F.M., Araújo, J.M.M., Coutinho, J.P., Marrucho, I.M., Lopes, J.N.C., Rebelo, L.P.N.: Aqueous biphasic systems: a boost brought about by using ionic liquids. Chem. Soc. Rev. 41, 4966–4995 (2012). https://doi.org/10.1039/c2cs35151j

    Article  PubMed  Google Scholar 

  9. Castro, L., Pereira, P., Freire, M., Pedro, A.: Progress in the development of aqueous two-phase systems comprising ionic liquids for the downstream processing of protein-based biopharmaceuticals. Am. Pharm. Rev. 1–6 (2019)

  10. McQueen, L., Lai, D.: Ionic liquid aqueous two-phase systems from a pharmaceutical perspective. Front. Chem. 7, 135 (2019). https://doi.org/10.3389/fchem.2019.00135

    Article  PubMed  PubMed Central  Google Scholar 

  11. Pereira, M.M., Pedro, S.N., Quental, M.V., Lima, Á.S., Coutinho, J.A.P., Freire, M.G.: Enhanced extraction of bovine serum albumin with aqueous biphasic systems of phosphonium- and ammonium-based ionic liquids. J. Biotechnol. 206, 17–25 (2015). https://doi.org/10.1016/j.jbiotec.2015.03.028

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang, Z., Pei, Y., Zhao, J., Li, Z., Chen, Y., Zhuo, K.: Formation of ether-functionalized ionic-liquid-based aqueous two-phase systems and their application in separation of protein and saccharides. J. Phys. Chem. B 119, 4471–4478 (2015). https://doi.org/10.1021/jp510984d

    Article  PubMed  Google Scholar 

  13. Čížová, A., Korcová, J., Farkaš, P., Bystrický, S.: Efficient separation of mannan–protein mixtures by ionic liquid aqueous two-phase system, comparison with lectin affinity purification. Int. J. Biol. Macromol. 98, 314–318 (2017). https://doi.org/10.1016/j.ijbiomac.2017.02.001

    Article  PubMed  Google Scholar 

  14. Jiang, B., Feng, Z., Liu, C., Xu, Y., Li, D., Ji, G.: Extraction and purification of wheat-esterase using aqueous two-phase systems of ionic liquid and salt. J. Food Sci. Technol. 52, 2878–2885 (2015). https://doi.org/10.1007/s13197-014-1319-5

    Article  PubMed  Google Scholar 

  15. Santos, J.H.P.M., Trigo, J.P., Maricato, É., Nunes, C., Coimbra, M.A., Ventura, S.P.M.: Fractionation of isochrysis galbana proteins, arabinans, and glucans using ionic-liquid-based aqueous biphasic systems. ACS Sustain. Chem. Eng. 6, 14042–14053 (2018). https://doi.org/10.1021/acssuschemeng.8b02597

    Article  Google Scholar 

  16. Santos, J.H.P.M., e Silva, F.A., Coutinho, J.A.P., Ventura, S.P.M., Pessoa, A.: Ionic liquids as a novel class of electrolytes in polymeric aqueous biphasic systems. Process Biochem. 50, 661–668 (2015). https://doi.org/10.1016/j.procbio.2015.02.001

    Article  Google Scholar 

  17. Vahidnia, M., Pazuki, G., Abdolrahimi, S.: Impact of polyethylene glycol as additive on the formation and extraction behavior of ionic-liquid based aqueous two-phase system. AIChE J. 62, 264–274 (2015). https://doi.org/10.1002/aic.15035

    Article  Google Scholar 

  18. Quental, M.V., Caban, M., Pereira, M.M., Stepnowski, P., Coutinho, J.A.P., Freire, M.G.: Enhanced extraction of proteins using cholinium-based ionic liquids as phase-forming components of aqueous biphasic systems. Biotechnol. J. 10, 1457–1466 (2015). https://doi.org/10.1002/biot.201500003

    Article  PubMed  Google Scholar 

  19. Song, C.P., Ramanan, R.N., Vijayaraghavan, R., MacFarlane, D.R., Chan, E.-S., Ooi, C.-W.: Green, aqueous two-phase systems based on cholinium aminoate ionic liquids with tunable hydrophobicity and charge density. ACS Sustain. Chem. Eng. 3, 3291–3298 (2015). https://doi.org/10.1021/acssuschemeng.5b00881

    Article  Google Scholar 

  20. Taha, M., Quental, M.V., Correia, I., Freire, M.G., Coutinho, J.A.P.: Extraction and stability of bovine serum albumin (BSA) using cholinium-based Good’s buffers ionic liquids. Process Biochem. 50, 1158–1166 (2015). https://doi.org/10.1016/j.procbio.2015.03.020

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gupta, B.S., Taha, M., Lee, M.-J.: Extraction of an active enzyme by self-buffering ionic liquids: a green medium for enzymatic research. RSC Adv. 6, 18567–18576 (2016). https://doi.org/10.1039/C6RA00607H

    Article  Google Scholar 

  22. Gupta, B.S., Taha, M., Lee, M.-J.: Self-buffering and biocompatible ionic liquid based biological media for enzymatic research. RSC Adv. 5, 106764–106773 (2015). https://doi.org/10.1039/C5RA16317J

    Article  Google Scholar 

  23. Lee, S.Y., Vicente, F.A., e Silva, F.A., Sintra, T.E., Taha, M., Khoiroh, I., Coutinho, J.A.P., Show, P.L., Ventura, S.P.M.: Evaluating self-buffering ionic liquids for biotechnological applications. ACS Sustain. Chem. Eng. 3, 3420–3428 (2015). https://doi.org/10.1021/acssuschemeng.5b01155

    Article  Google Scholar 

  24. Lee, S.Y., Khoiroh, I., Coutinho, J.A.P., Show, P.L., Ventura, S.P.M.: Lipase production and purification by self-buffering ionic liquid-based aqueous biphasic systems. Process Biochem. 63, 221–228 (2017). https://doi.org/10.1016/j.procbio.2017.08.020

    Article  Google Scholar 

  25. Souza, R.L., Lima, R.A., Coutinho, J.A.P., Soares, C.M.F., Lima, Á.S.: Aqueous two-phase systems based on cholinium salts and tetrahydrofuran and their use for lipase purification. Sep. Purif. Technol. 155, 118–126 (2015). https://doi.org/10.1016/j.seppur.2015.05.021

    Article  Google Scholar 

  26. Souza, R.L., Ventura, S.P.M., Soares, C.M.F., Coutinho, J.A.P., Lima, Á.S.: Lipase purification using ionic liquids as adjuvants in aqueous two-phase systems. Green Chem. 17, 3026–3034 (2015). https://doi.org/10.1039/C5GC00262A

    Article  Google Scholar 

  27. Suarez Ruiz, C.A., van den Berg, C., Wijffels, R.H., Eppink, M.H.M.: Rubisco separation using biocompatible aqueous two-phase systems. Sep. Purif. Technol. 196, 254–261 (2018). https://doi.org/10.1016/j.seppur.2017.05.001

    Article  Google Scholar 

  28. Taha, M., Almeida, M.R., Silva, F.A.E., Domingues, P., Ventura, S.P.M., Coutinho, J.A.P., Freire, M.G.: Novel biocompatible and self-buffering ionic liquids for biopharmaceutical applications. Chemistry 21, 4781–4788 (2015). https://doi.org/10.1002/chem.201405693

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mondal, D., Sharma, M., Quental, M.V., Tavares, A.P.M., Prasad, K., Freire, M.G.: Suitability of bio-based ionic liquids for the extraction and purification of IgG antibodies. Green Chem. 18, 6071–6081 (2016). https://doi.org/10.1039/C6GC01482H

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ramalho, C.C., Neves, C.M.S.S., Quental, M. V, Coutinho, J.A.P., Freire, M.G.: Separation of immunoglobulin G using aqueous biphasic systems composed of cholinium-based ionic liquids and poly(propylene glycol). J. Chem. Technol. Biotechnol. 93, 1931–1939 (2018)

  31. Capela, E.V., Santiago, A.E., Rufino, A.F.C.S., Tavares, A.P.M., Pereira, M.M., Mohamadou, A., Aires-Barros, M.R., Coutinho, J.A.P., Azevedo, A.M., Freire, M.G.: Sustainable strategies based on glycine–betaine analogue ionic liquids for the recovery of monoclonal antibodies from cell culture supernatants. Green Chem. 21, 5671–5682 (2019). https://doi.org/10.1039/C9GC02733E

    Article  Google Scholar 

  32. Vicente, F.A., Bairos, J., Roque, M., Coutinho, J.A.P., Ventura, S.P.M., Freire, M.G.: Use of ionic liquids as cosurfactants in mixed aqueous micellar two-phase systems to improve the simultaneous separation of immunoglobulin G and human serum albumin from expired human plasma. ACS Sustain. Chem. Eng. 7, 15102–15113 (2019). https://doi.org/10.1021/acssuschemeng.9b03841

    Article  Google Scholar 

  33. Passos, H., Luís, A., Freire, M.: Thermoreversible (ionic-liquid-based) aqueous biphasic systems. Sci. Rep. 6, 20276 (2016). https://doi.org/10.1038/srep20276

    Article  PubMed  PubMed Central  Google Scholar 

  34. Belchior, D.C.V., Quental, M.V., Pereira, M.M., Mendonça, C.M.N., Duarte, I.F., Freire, M.G.: Performance of tetraalkylammonium-based ionic liquids as constituents of aqueous biphasic systems in the extraction of ovalbumin and lysozyme. Sep. Purif. Technol. 233, 116019 (2020). https://doi.org/10.1016/j.seppur.2019.116019

    Article  Google Scholar 

  35. Du, Z., Yu, Y.-L., Wang, J.-H.: Extraction of proteins from biological fluids by use of an ionic liquid/aqueous two-Phase system. Chem. A Eur. J. 13, 2130–2137 (2007). https://doi.org/10.1002/chem.200601234

    Article  Google Scholar 

  36. Dreyer, S., Salim, P., Kragl, U.: Driving forces of protein partitioning in an ionic liquid-based aqueous two-phase system. Biochem. Eng. J. 46, 176–185 (2009). https://doi.org/10.1016/j.bej.2009.05.005

    Article  Google Scholar 

  37. Pei, Y., Wang, J., Wu, K., Xuan, X., Lu, X.: Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep. Purif. Technol. 64, 288–295 (2009). https://doi.org/10.1016/j.seppur.2008.10.010

    Article  Google Scholar 

  38. Yuanchao, P., Li, Z., Liu, L., Wang, J., Wang, H.: Selective separation of protein and saccharides by ionic liquids aqueous two-phase systems. Sci. China Chem. 53, 1554–1560 (2010). https://doi.org/10.1007/s11426-010-4025-9

    Article  Google Scholar 

  39. Lin, X., Wang, Y., Zeng, Q., Ding, X., Chen, J.: Extraction and separation of proteins by ionic liquid aqueous two-phase system. Analyst. 138, 6445–6453 (2013). https://doi.org/10.1039/C3AN01301D

    Article  PubMed  Google Scholar 

  40. Lehotay, S.J., Schenck, F.J.: Multiresidue methods: extraction. In: Encyclopedia of Separation Science, pp. 3409–3415. Elsevier (2000). https://doi.org/10.1016/b0-12-226770-2/05621-0

  41. Keçili, R., Büyüktiryaki, S., Dolak, I., Hussain, C.M.: The use of magnetic nanoparticles in sample preparation devices and tools. Handb. Nanomater. Anal. Chem. Mod. Trends Anal. 75–95 (2019). https://doi.org/10.1016/B978-0-12-816699-4.00005-0

  42. Yuan, S., Deng, Q., Fang, G., Pan, M., Zhai, X., Wang, S.: A novel ionic liquid polymer material with high binding capacity for proteins. J. Mater. Chem. 22, 3965–3972 (2012). https://doi.org/10.1039/c2jm14577d

    Article  Google Scholar 

  43. Chen, J., Wang, Y., Ding, X., Huang, Y., Xu, K.: Magnetic solid-phase extraction of proteins based on hydroxy functional ionic liquid-modified magnetic nanoparticles. Anal. Methods 6, 8358–8367 (2014). https://doi.org/10.1039/c4ay01786b

    Article  Google Scholar 

  44. Fontanals, N., Borrull, F., Marcé, R.M.: Ionic liquids in solid-phase extraction. TrAC - Trends Anal. Chem. 41, 15–26 (2012). https://doi.org/10.1016/j.trac.2012.08.010

    Article  Google Scholar 

  45. Mecerreyes, D.: Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog. Polym. Sci. 36, 1629–1648 (2011). https://doi.org/10.1016/j.progpolymsci.2011.05.007

    Article  Google Scholar 

  46. Lu, J., Yan, F., Texter, J.: Advanced applications of ionic liquids in polymer science. Prog. Polym. Sci. 34, 431–448 (2009). https://doi.org/10.1016/j.progpolymsci.2008.12.001

    Article  Google Scholar 

  47. Dang, M., Deng, Q., Fang, G., Zhang, D., Liu, J., Wang, S.: Preparation of novel anionic polymeric ionic liquid materials and their potential application to protein adsorption. J. Mater. Chem. B. 5, 6339–6347 (2017). https://doi.org/10.1039/c7tb01234a

    Article  PubMed  Google Scholar 

  48. Shaplov, A.S., Lozinskaya, E.I., Vygodskii, Y.S.: Polymer ionic liquids: synthesis, design and application in electrochemistry as ion conducting materials. In: Torriero, A.A.J., Shiddiky, M. (eds.) Electrochemical Properties and Applications of Ionic Liquids, pp. 203–298. Nova Science Publishers Inc. (2010)

  49. Jia, X., Hu, X., Wang, W., Du, C.: Non-covalent loading of ionic liquid-functionalized nanoparticles for bovine serum albumin: Experiments and theoretical analysis. RSC Adv. 9, 19114–19120 (2019). https://doi.org/10.1039/c9ra02265a

    Article  Google Scholar 

  50. Liu, Y., Ma, R., Deng, Q., Zhang, L., Liu, C., Wang, S.: Preparation of ionic liquid polymer materials and their recognition properties for proteins. RSC Adv. 4, 52147–52154 (2014). https://doi.org/10.1039/c4ra05713a

    Article  Google Scholar 

  51. Qian, L., Yang, M., Chen, H., Xu, Y., Zhang, S., Zhou, Q., He, B., Bai, Y., Song, W.: Preparation of a poly(ionic liquid)-functionalized cellulose aerogel and its application in protein enrichment and separation. Carbohydr. Polym. 218, 154–162 (2019). https://doi.org/10.1016/j.carbpol.2019.04.081

    Article  PubMed  Google Scholar 

  52. Shu, Y., Chen, X.W., Wang, J.H.: Ionic liquid-polyvinyl chloride ionomer for highly selective isolation of basic proteins. Talanta 81, 637–642 (2010). https://doi.org/10.1016/j.talanta.2009.12.059

    Article  PubMed  Google Scholar 

  53. Wei, Y., Li, Y., Tian, A., Fan, Y., Wang, X.: Ionic liquid modified magnetic microspheres for isolation of heme protein with high binding capacity. J. Mater. Chem. B 1, 2066–2071 (2013). https://doi.org/10.1039/c3tb00576c

    Article  PubMed  Google Scholar 

  54. Zhao, G., Chen, S., Chen, X.W., He, R.H.: Selective isolation of hemoglobin by use of imidazolium-modified polystyrene as extractant. Anal. Bioanal. Chem. 405, 5353–5358 (2013). https://doi.org/10.1007/s00216-013-6889-y

    Article  PubMed  Google Scholar 

  55. Wang, X.F., Zhang, Y., Shu, Y., Chen, X.W., Wang, J.H.: Ionic liquid poly(3-n-dodecyl-1-vinylimidazolium) bromide as an adsorbent for the sorption of hemoglobin. RSC Adv. 5, 31496–31501 (2015). https://doi.org/10.1039/c5ra00036j

    Article  Google Scholar 

  56. Kohno, Y., Gin, D.L., Noble, R.D., Ohno, H.: A thermoresponsive poly(ionic liquid) membrane enables concentration of proteins from aqueous media. Chem. Commun. 52, 7497–7500 (2016). https://doi.org/10.1039/c6cc02703b

    Article  Google Scholar 

  57. Liu, C., Deng, Q., Fang, G., Huang, X., Wang, S.: Facile synthesis of graphene doped poly(ionic liquid) boronate affinity material for specific capture of glycoproteins. J. Mater. Chem. B. 2, 5229–5237 (2014). https://doi.org/10.1039/c4tb00663a

    Article  PubMed  Google Scholar 

  58. Rudd, P.M., Elliott, T., Cresswell, P., Wilson, I.A., Dwek, R.A.: Glycosylation and the immune system. Science 291, 2370–2376 (2001). https://doi.org/10.1126/science.291.5512.2370

    Article  PubMed  Google Scholar 

  59. Jones, C.J., Larive, C.K.: Carbohydrates: Cracking the glycan sequence code. Nat. Chem. Biol. 7, 758–759 (2011). https://doi.org/10.1038/nchembio.696

    Article  PubMed  Google Scholar 

  60. Hekmat, D., Hebel, D., Joswig, S., Schmidt, M., Weuster-Botz, D.: Advanced protein crystallization using water-soluble ionic liquids as crystallization additives. Biotechnol. Lett. 29, 1703–1711 (2007). https://doi.org/10.1007/s10529-007-9456-9

    Article  PubMed  Google Scholar 

  61. Judge, R.A., Takahashi, S., Longenecker, K.L., Fry, E.H., Abad-Zapatero, C., Chiu, M.L.: The effect of ionic liquids on protein crystallization and X-ray diffraction resolution. Cryst. Growth Des. 9, 3463–3469 (2009). https://doi.org/10.1021/cg900140b

    Article  Google Scholar 

  62. Xiao, H., Dang, L., Wang, Z.: Crystal morphology and molecular interaction of lysozyme affected by imidazolium-based ionic liquids in aqueous solutions. In: 5th International Conference on Bioinformatics and Biomedical Engineering, pp. 1–5. IEEE (2011). https://doi.org/10.1109/icbbe.2011.5780030

  63. Bonĥte, P., Dias, A.P., Papageorgiou, N., Kalyanasundaram, K., Grätzel, M.: Hydrophobic, highly conductive ambient-temperature molten salts. Inorg. Chem. 35, 1168–1178 (1996). https://doi.org/10.1021/ic951325x

    Article  Google Scholar 

  64. Nockemann, P., Thijs, B., Van Hecke, K., Van Meervelt, L., Binnemans, K.: Polynuclear metal complexes obtained from the task-specific ionic liquid betainium bistriflimide. Cryst. Growth Des. 8, 1353–1363 (2008). https://doi.org/10.1021/cg701187t

    Article  Google Scholar 

  65. Wang, Z., Fang, W., Li, Y., Zhang, J., Gu, Q.: A new strategy for protein crystallization: effect of ionic liquids on lysozyme crystallization and morphology. Korean J. Chem. Eng. 31, 919–923 (2014). https://doi.org/10.1007/s11814-014-0057-8

    Article  Google Scholar 

  66. Yu, X., Tian, N., Huang, F., Huang, X., Liu, C., Gao, S., Yang, Z., Wu, Y.: Evaluating the role of ionic liquids (ILs) in the crystallization of lysozyme. J. Mol. Liq. 296, 112018 (2019). https://doi.org/10.1016/j.molliq.2019.112018

    Article  Google Scholar 

  67. Garlitz, J.A., Summers, C.A., Flowers, R.A., Borgstahl, G.E.O.: Ethylammonium nitrate: a protein crystallization reagent. Acta Crystallogr. D 55, 2037–2038 (1999). https://doi.org/10.1107/S0907444999011774

    Article  PubMed  Google Scholar 

  68. Li, X., Xu, X., Dan, Y., Feng, J., Ge, L., Zhang, M.: The crystallization of lysozyme in the system of ionic liquid [BMIm][BF4]–water. Cryst. Res. Technol. 43, 1062–1068 (2008). https://doi.org/10.1002/crat.200800040

    Article  Google Scholar 

  69. Li, X.X., Xu, X.D., Dan, Y.Y., Zhang, M.L.: The crystallization of lysozyme and thaumatin with ionic liquid. Crystallogr. Rep. 54, 1285–1288 (2009). https://doi.org/10.1134/S1063774509070268

    Article  Google Scholar 

  70. Chen, X., Ji, Y., Wang, J.: Improvement on the crystallization of lysozyme in the presence of hydrophilic ionic liquid. Analyst 135, 2241–2248 (2010). https://doi.org/10.1039/c0an00244e

    Article  PubMed  Google Scholar 

  71. Kennedy, D.F., Drummond, C.J., Peat, T.S., Newman, J.: Evaluating protic ionic liquids as protein crystallization additives. Cryst. Growth Des. 11, 1777–1785 (2011). https://doi.org/10.1021/cg1017104

    Article  Google Scholar 

  72. Kowacz, M., Mukhopadhyay, A., Carvalho, A.L., Esperança, J.M.S.S., Romão, M.J., Rebelo, L.P.N.: Hofmeister effects of ionic liquids in protein crystallization: direct and water-mediated interactions. CrystEngComm 14, 4912–4921 (2012). https://doi.org/10.1039/c2ce25129a

    Article  Google Scholar 

  73. Kowacz, M., Marchel, M., Juknaite, L., Esperança, J.M.S.S., Romão, M.J., Carvalho, A.L., Rebelo, L.P.N.: Ionic-liquid-functionalized mineral particles for protein crystallization. Cryst. Growth 15, 2994–3003 (2015). https://doi.org/10.1021/acs.cgd.5b00403

    Article  Google Scholar 

  74. Belviso, B.D., Caliandro, R., Salehi, S.M., Di Profio, G., Caliandro, R.: Protein crystallization in ionic-liquid hydrogel composite membranes. Crystals 9, 253 (2019). https://doi.org/10.3390/cryst9050253

    Article  Google Scholar 

  75. Pusey, M.L., Paley, M.S., Turner, M.B., Rogers, R.D.: Protein crystallization using room temperature ionic liquids. Cryst. Growth Des. 7, 787–793 (2007). https://doi.org/10.1021/cg060696t

    Article  Google Scholar 

  76. Wang, Z., Wang, Q., Dang, L.: Ionic liquids as selectors for controlling the crystallization nucleation of hen egg white lysozyme. Biotechnol. Bioprocess Eng. 17, 1025–1030 (2012). https://doi.org/10.1007/s12257-012-0096-0

    Article  Google Scholar 

Download references

Acknowledgements

This work was developed within the scope of the project CICECO-Aveiro Institute of Materials, UIDB/50011/2020 & UIDP/50011/2020, financed by national funds through the Portuguese Foundation for Science and Technology/MCTES. This work was financially supported by Associate Laboratory LSRE-LCM- UID/EQU/50020/2020 – financed by national funds through FCT/MCTES (PIDDAC) and POCI-01-0145-FEDER-031268 – funded by FEDER, through COMPETE2020 – Programa Operacional Competitividade e Internacionalização (POCI), and by national funds (OE), through FCT/MCTES. João C. F. Nunes acknowledges SPQ and FCT for the PhD fellowship (SFRH/BD/150671/2020). Ana P. M. Tavares acknowledges the FCT Investigator Programme and Exploratory Project (IF/01634/2015) with financing from the European Social Fund and the Human Potential Operational Programme, and Márcia C. Neves acknowledges the research contract CEECIND/00383/2017.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana P. M. Tavares.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nunes, J.C.F., Almeida, M.R., Faria, J.L. et al. Overview on Protein Extraction and Purification Using Ionic-Liquid-Based Processes. J Solution Chem 51, 243–278 (2022). https://doi.org/10.1007/s10953-021-01062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01062-x

Keywords

Navigation