Skip to main content
Log in

Investigation of Temperature Dependence of Protein Solutions by NMR Spectroscopy

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, the proton spin–lattice (T1) and spin–spin (T2) relaxation times of aqueous solutions of bovine serum albumin (BSA) were investigated as a function of temperature. The T1 relaxation times were measured versus temperature (T) for five H2O solutions containing different BSA concentrations. The sample temperature was varied from 304 to 253 K for each concentration. T2 measurements were carried out versus the BSA concentrations only. The least-square fitting of ln(T1) versus T−1 yields a linear correlation. The effective correlation times \(\tau_{1}\) for T1 and \(\tau_{2}\) for T2 were calculated by using experimental data and the related theory. The data suggest that surface water is responsible for the dipolar relaxation mechanisms. Both T1 and T2 mechanisms are caused by overall tumbling of albumin molecule causing the rotational correlation time. However, some slow motions may contribute to the T2 mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Valckenborg, R.M.E.: NMR on Technological Porous Materials. Eindhoven University of Technology, Eindhoven (2001)

    Google Scholar 

  2. Van-Quynh, A., Willson, S., Bryant, R.G.: Protein reorientation and bound water molecules measured by 1H magnetic spin-lattice relaxation. Biophys. J. 84, 558–563 (2003)

    Article  CAS  Google Scholar 

  3. Yoshıoki, S.: Dynamics of a protein and water molecules surrounding the protein: hydrogen-bonding between vibrating water molecules and a fluctuating protein. J. Comput. Chem. 23, 402–413 (2002)

    Article  Google Scholar 

  4. Bertini, I., Gupta, Y.K., Luchinat, C., Parigi, G., Schlörb, C., Schwalbe, H.: NMR Spectroscopic detection of protein protons and longitudinal relaxation rates between 0.01 and 50 MHz. Angew. Chem. 44, 2223–2225 (2005)

    Article  CAS  Google Scholar 

  5. Kay, L.E., Nicholson, L.K., Linda, K., Delaglio, F., Bax, A., Torchia, D.A.: Pulse Sequences for removal of the effects of cross correlation between dipolar and chemical-shift anisotropy relaxation mechanisms on the measurement of heteronuclear TI and T2 values in proteins. J. Magn. Reson. 97, 359–375 (1992)

    CAS  Google Scholar 

  6. Kavak, G., Yılmaz, A., Morris, G., Heatley, F.: Investigation of the hydration of bovine serum albumin by an NMR titration method. Asian J. Chem. 22, 1355–1359 (2010)

    CAS  Google Scholar 

  7. Köylü, M.Z., Asubay, S., Yılmaz, A.: Determination of proton relaxivities of Mn(II), Cu(II) and Cr(III) added to solutions of serum proteins. Molecules 14, 1537–1545 (2009)

    Article  Google Scholar 

  8. Bokor, M., Csizmók, V., Kovács, D., Bánki, P., Friedrich, P., Tompa, P., Tompa, K.: NMR relaxation studies on the hydrate layer of intrinsically unstructured proteins. Biophys. J. 88, 2030–2037 (2005)

    Article  CAS  Google Scholar 

  9. James, T.L.: Nuclear Magnetic Resonance in Biochemistry. Academic Press, New York (1975)

    Google Scholar 

  10. Fullerton, G.D., Ord, V.A., Cameron, I.L.: An evaluation of the hydration of lysozyme by an NMR titration method. Biochim. Biophys. Acta 869, 230–246 (1986)

    Article  CAS  Google Scholar 

  11. Koenig, S.H.: Classes of hydration sites at protein–water interfaces: the source of contrast in magnetic resonance imaging. Biophys. J. 69, 593–603 (1995)

    Article  CAS  Google Scholar 

  12. Bryant, R.G.: The dynamics of water protein interactions. Ann. Rev. Biophys. Biomol. Struct. 25, 29–53 (1996)

    Article  CAS  Google Scholar 

  13. Yılmaz, A., Budak, H., Ulak, F.S.: Determination of the effective correlation time modulating 1H NMR relaxation processes of bound water in protein solutions. Magn. Reson. Imaging 26, 254–260 (2008)

    Article  Google Scholar 

  14. Jun, J.Y., Hoang, H.N., Paik, S.Y.R., Chun, H.S., Kang, B.C., Ko, S.: Preparation of size-controlled bovine serum albumin (BSA) nanoparticles by a modified desolvation method. Food Chem. 127, 1892–1898 (2011)

    Article  CAS  Google Scholar 

  15. Fitter, J.: The temperature dependence of internal molecular motions in hydrated and dry alpha-amylase: the role of hydration water in the dynamical transition of proteins. Biophys. J. 76, 1034–1042 (1999)

    Article  CAS  Google Scholar 

  16. Vesanen, P.T., Zevenhoven, K.C.J., Nieminen, J.O., Dabek, J., Parkkonen, L.T., Ilmoniemi, R.J.: Temperature dependence of relaxation times and temperature mapping in ultra-low-field MRI. J. Magn. Reson. 235, 50–57 (2013)

    Article  CAS  Google Scholar 

  17. Kakule, J.F., Sharp, A.R., Schreiner, L.J., Thompson, R.T., Kupka, T., Holly, R., Peemoeller, H.: Cross-relaxation bottleneck in water–lysozyme proton magnetization exchange. Biopolymers 83, 11–19 (2006)

    Article  CAS  Google Scholar 

  18. Daskiewicz, O.K., Hennel, J.W., Lubas, B.: Proton magnetic relaxation and protein hydration. Nature 200, 1006–1007 (1963)

    Article  Google Scholar 

  19. Yoshioka, S., Aso, Y., Kojima, S.: Softening temperature of lyophilized bovine serum albumin and gamma-globulin as measured by spin–spin relaxation time of protein protons. J. Pharm. Sci. 86, 470–474 (1997)

    Article  CAS  Google Scholar 

  20. Yılmaz, A., Yurdakoç, M., Isik, B.: Influence of transition metal ions on NMR proton T1 relaxation times of serum, blood, and red cells. Biol. Trace Element Res. 67, 187–193 (1999)

    Article  Google Scholar 

  21. Fullerton, G.D.: Physiologic basis of magnetic relaxation. Mag. Reson. Imaging 10, 88–108 (1992)

    Google Scholar 

  22. Prosser, S., Peemoeller, H.: Nature of lysozyme–water interactions by proton NMR. Biochem. Cell Biol. 69, 341–345 (1991)

    Article  CAS  Google Scholar 

  23. Köylü, M.Z., Budak, H.: Temperature dependence of NMR T1 relaxation of dibenzo diaza 18-crown-6 ether derivative in solution. Asian J. Chem. 19, 2349–2352 (2007)

    Google Scholar 

  24. Gallier, J., Rivet, P., de Certaines, J.: 1H- and 2H-NMR study of bovine serum albumin solutions. Biochim. Biophys. Acta 915, 1–18 (1987)

    Article  CAS  Google Scholar 

  25. Koenig, S.H., Schillinger, W.E.: Nuclear magnetic relaxation dispersion in protein solutions. I. Apotransferrin. J. Biol. Chem. 244, 3283–3289 (1969)

    Article  CAS  Google Scholar 

  26. Gösch, L., Noack, F.: NMR relaxation investigation of water mobility in aqueous bovine serum albumin solutions. Biochim. Biophys. Acta 453, 218–232 (1976)

    Article  Google Scholar 

  27. Fullerton, G.D., Finnie, M.F., Hunter, K.E., Ord, A., Cameron, I.L.: The influence of macromolecular polymerization on spin-lattice relaxation of aqueous solutions. J. Magn. Reson. Imaging 5, 353–370 (1987)

    Article  CAS  Google Scholar 

  28. Cameron, I.L., Ord, V.A., Fullerton, G.D.: Water of hydration in the intra- and extracellular environment of human erythrocytes. Biochem. Cell. Biol. 66, 1186–1199 (1988)

    Article  CAS  Google Scholar 

  29. Yılmaz, A., Zengin, B., Ulak, F.S.: NMR proton spin-lattice relaxation mechanism in D2O solutions of albumin determined at 400 MHz. J. Appl. Spect. 81, 365–370 (2014)

    Article  Google Scholar 

  30. Korunur, S., Zengin, B., Yılmaz, A.: 400 MHz NMR study of isotope effects on albumin in H2O/D2O solutions. Russ. J. Phys. Chem. A 92, 1932–1934 (2018)

    Article  CAS  Google Scholar 

  31. Schuhmacher, J.H., Clorıus, J.H., Semmler, W., Hauser, H., Matys, E.R., Maier-Borst, W., Hull, W.E.: NMR relaxation times T1 and T2 of water in plasma from patients with lung carcinoma: correlation of T2 with blood sedimentation rate. Magn. Reson. Med. 5, 537–547 (1987)

    Article  CAS  Google Scholar 

  32. McLachlan, L.A.: Cancer-induced decreases in human plasma proton NMR relaxation rates. Phys. Med. Biol. 25, 309–315 (1980)

    Article  CAS  Google Scholar 

  33. Halle, B.: Protein hydration dynamics in solution: a critical survey. Philos. Trans. R. Soc. London B. 359, 1207–1224 (2004)

    Article  CAS  Google Scholar 

  34. Budak, H., Köylü, M.Z., Yılmaz, U.N.: The effective correlation time τ in jaw cysts determined from 400 MHz NMR T1 and T2 measurements. Spectroscopy 20, 177–183 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technological Research Council of Turkey (TÜBİTAK). Thanks to Professor Gareth Morris of Manchester University, and Professor Ali Yılmaz of Batman University for their assistance.

Funding

This research received no external funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gülten Kavak Balcı.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavak Balcı, G. Investigation of Temperature Dependence of Protein Solutions by NMR Spectroscopy. J Solution Chem 50, 232–239 (2021). https://doi.org/10.1007/s10953-021-01052-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-021-01052-z

Keywords

Navigation