Skip to main content
Log in

The Nonlinear Decrement in Static Permittivity of Electrolytes in High-Polarity Solvents

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

A theoretical model describing the nonlinear decrement in the static permittivity of electrolytes in high-polarity solvents is developed on the basis of the Langevin statistical theory with a subsequent customization. This customization is in relation to the dilution of the polar dipoles by free ions and the influence of the local electric field radiated by ions on the solvent molecules in the proximity of the ions. It is interesting that the mean ionic size and the interaction between ions and solvent molecules responsible for the decrement in the static permittivity of electrolyte solutions are shown. The model exhibits not only the linear decrement in permittivity for dilute solutions but also the nonlinear one for concentrated solutions of electrolytes in different high-polarity solvents at a definite temperature with a single parameter. It is pointed out that the influence of the local electric field on the polarization of methanol is much stronger than that of water. Moreover, the factors affecting the solvation energies of electrolyte ions in high-polarity solvents are interpreted. Because of the simple form of the static permittivity function, the concentration dependence of the Debye screening length is carefully and obviously considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Barthel, J.M.G., Krienke, H., Kunz, W.: Physical Chemistry of Electrolyte Solutions. Modern Aspects. Springer, Darmstadt (1998)

    Google Scholar 

  2. Abramo, M.C., Caccamo, C., Calvo, M., ContiNibali, V., Costa, D., Giordano, G., Pellicane, G., Ruberto, R., Wanderlingh, U.: Molecular dynamics and small-angle neutron scattering of lysozyme aqueous solutions. Philos. Mag. 91, 2066–2076 (2011)

    Article  CAS  Google Scholar 

  3. Pellicane, G., Cavero, M.: Theoretical study of interactions of BSA protein in a NaCl aqueous solution. J. Chem. Phys. 138(11), 115103 (2013)

    Article  Google Scholar 

  4. Hilland, J.: Simple sensor system for measuring the dielectric properties of saline solutions. Meas. Sci. Technol. 8, 901–910 (1997)

    Article  CAS  Google Scholar 

  5. Kraszewski, A.: Microwave Aquametry: Electromagnetic Wave Interaction with Water-Containing Materials. IEEE Press, New York (1996)

    Google Scholar 

  6. Bockris, J.O., Reddy, A.K.: Modern Electrochemistry, 2nd edn. Kluwer Academic, Plenum Publishers, New York (1998)

    Google Scholar 

  7. Chen, T., Hefter, G., Büchner, R.: Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J. Phys. Chem. A 107, 4025–4031 (2003)

    Article  CAS  Google Scholar 

  8. Buchner, R., Hefter, G.T., May, P.M.: Dielectric relaxation of aqueous NaCl solutions. Phys. Chem. A 103, 1–9 (1999)

    Article  CAS  Google Scholar 

  9. Zasetsky, A.Y., Lileev, A.S., Lyashchenko, A.K.: Dielectric properties of NaCl aqueous solutions in UHF range. Zh. Neorg. Khim. 39, 1035–1040 (1994)

    Google Scholar 

  10. Loginova, D.V., Lileev, A.S., Lyashchenko, A.K.: Dielectric properties of aqueous potassium chloride solutions as a function of temperature. Russ. J. Inorg. Chem. 47, 1426–1433 (2002)

    Google Scholar 

  11. Tikanen, A.C., Fawcett, W.R.: Application of the mean spherical approximation and ion association to describe the activity coefficients of aqueous 1:1 Electrolytes. J. Electroanal. Chem. 439, 107–113 (1997)

    Article  CAS  Google Scholar 

  12. Winsor, P., Cole, R.H.: Dielectric properties of electrolyte solutions. 1. Sodium-iodide in 7 solvents at various temperatures. J. Phys. Chem. 86, 2486–2490 (1982)

    Article  CAS  Google Scholar 

  13. Winsor, P., Cole, R.H.: Dielectric properties of electrolyte-solutions. 2. Alkali-halides in methanol. J. Phys. Chem. 86, 2491–2494 (1982)

    Article  CAS  Google Scholar 

  14. Hasted, J.B., Roderick, G.W.: Dielectric properties of aqueous and alcoholic electrolytic solutions. J. Chem. Phys. 29, 17–26 (1958)

    Article  CAS  Google Scholar 

  15. Haggis, G., Hasted, J., Buchanan, T.: The dielectric properties of water in solutions. J. Chem. Phys. 20, 1452–1465 (1952)

    Article  CAS  Google Scholar 

  16. Glueckauf, E.: Bulk dielectric constant of aqueous electrolyte solutions. Trans. Faraday Soc. 60, 1637–1645 (1964)

    Article  CAS  Google Scholar 

  17. Liszi, J., Felinger, A., Kristof, E.: Static relative permittivity of electrolyte solutions. Electrochim. Acta 33, 1191–1194 (1988)

    Article  CAS  Google Scholar 

  18. Levy, A., Andelman, D., Orland, H.: Dielectric constant of ionic solutions: a field-theory approach. Phys. Rev. Lett. 108, 227801–227805 (2012)

    Article  Google Scholar 

  19. Gavish, N., Promislow, K.: Dependence of the dielectric constant of electrolyte solutions on ionic concentration: a microfield approach. Phys. Rev. E. 94, 012611–012615 (2016)

    Article  Google Scholar 

  20. Persson, R.A.X.: On the dielectric decrement of electrolyte solutions: a dressed-ion theory analysis. Phys. Chem. Chem. Phys. 19, 1982–1987 (2017)

    Article  CAS  Google Scholar 

  21. Hückel, E.Z.: Theorie konzentrierterer wässeriger Lösungen starker Elektrolyte. Phys. Z. 26, 93–147 (1925)

    Google Scholar 

  22. Shilov, I.Y., Lyashchenko, A.K.: The role of concentration dependent static permittivity of electrolyte solutions in the Debye-Hückel theory. J. Phys. Chem. B 119(31), 10087–10095 (2015)

    Article  CAS  Google Scholar 

  23. Mollerup, J.M., Breil, M.P.: Modeling the permittivity of electrolyte solutions. AIChE J. 61(9), 2854–2860 (2015)

    Article  CAS  Google Scholar 

  24. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1998)

    Google Scholar 

  25. Hasted, J.B., Ritson, D.M., Collie, C.H.: Dielectric properties of aqueous ionic solutions. Parts I and II. J. Chem. Phys. 16, 1–21 (1948)

    Article  CAS  Google Scholar 

  26. Smith, D.W.J.: Ionic hydration enthalpies. Chem. Educ. 54, 540–542 (1977)

    Article  CAS  Google Scholar 

  27. Amicangelo, J.C., Armentrout, P.B.: Relative and absolute bond dissociation energies of sodium cation complexes determined using competitive collision-induced dissociation experiments. Int. J. Mass Spectrom. 212(1–3), 301–325 (2001)

    Article  CAS  Google Scholar 

  28. Varela, L.M., García, M., Mosquera, V.: Exact Mean-field theory of ionic solutions: non-Debye screening. Phys. Rep. 382, 1–111 (2003)

    Article  CAS  Google Scholar 

  29. Fawcett, W.R., Tikanen, A.C.: Role of solvent permittivity in estimation of electrolyte activity coefficients on the basis of the mean spherical approximation. J. Phys. Chem. 100, 4251–4255 (1996)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tuan Le or Nhan Thi Tran.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T., Tran, N.T. The Nonlinear Decrement in Static Permittivity of Electrolytes in High-Polarity Solvents. J Solution Chem 50, 105–115 (2021). https://doi.org/10.1007/s10953-020-01045-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01045-4

Keywords

Navigation