Skip to main content
Log in

Thermodynamic Properties: Determination of the (NaCl + l-Proline + H2O) Ternary System Based on Potentiometric Measurements at T = (293.2, 303.2 and 313.2) K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, the thermodynamic properties of the ternary (NaCl + l-proline + H2O) system are reported, based on the potentiometric technique. The potentiometric measurements were carried out by using self-made ion selective electrodes (ISE) on the galvanic cell of type Na-ISE | NaCl (mB), l-proline (mA), H2O | Ag/AgCl in various series of the l-proline aqueous solution (mA = 0.2227, 0.4571, 0.7043 and 0.9651) mol·kg−1 and NaCl in pure water over NaCl molalities ranging from (0.01 to 4.00) mol·kg−1 at T = (293.2, 303.2, and 313.2) K and p = 101.3 kPa. Correlation of the experimental data was performed based on the Pitzer model as modified by Esteso et al. (MP). The MP parameters obtained were used to calculate the natural logarithm of the ratio of l-proline activity coefficients in NaCl and water mixtures to l-proline activity coefficients in pure water (\(\ln ({{\gamma_{{\text{A}}} } \mathord{\left/ {\vphantom {{\gamma_{{\text{A}}} } {\gamma_{{\text{A}}}^{0} }}} \right. \kern-\nulldelimiterspace} {\gamma_{{\text{A}}}^{0} }})\)), osmotic coefficients (φ), excess Gibbs energy (GE/RT) and water activity (aw) for different series of l-proline molality. The NaCl transfer Gibbs energy and McMillan–Mayer parameters were also calculated for the system. Good consistency was found between the MP and McMillan–Mayer model parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bhattacharyya, A., Bhattacharya, S.K.: Chemical transfer energies of some homologous amino acids and the –CH2– group in aqueous DMF: solvent effect on hydrophobic hydration and three dimensional solvent structure. J. Solution Chem. 42, 2149–2167 (2013)

    Article  CAS  Google Scholar 

  2. Held, C., Cameretti, L.F., Sadowski, G.: Measuring and modeling activity coefficients in aqueous amino-acid solutions. Ind. Eng. Chem. Res. 50, 131–141 (2010)

    Article  Google Scholar 

  3. Venkatesu, P., Lee, M.-J., Lin, H.-M.: Densities of aqueous solutions containing model compounds of amino acids and ionic salts at T = 298.15 K. J. Chem. Thermodyn. 39, 1206–1216 (2007)

    Article  CAS  Google Scholar 

  4. Arakawa, T., Tsumoto, K., Kita, Y., Chang, B., Ejima, D.: Biotechnology applications of amino acids in protein purification and formulations. Amino Acids 33, 587–605 (2007)

    Article  CAS  PubMed  Google Scholar 

  5. Bang, C.-H., Choi, H.-K., Lee, B.-S.: Modeling of activity coefficients of amino acid and electrolyte in aqueous solutions. J. Mol. Liq. 223, 1–9 (2016)

    Article  CAS  Google Scholar 

  6. Ghalami-Choobar, B., Mossayyebzadeh-Shalkoohi, P.: Activity coefficient measurements and thermodynamic modeling of (CaCl2+ l-alanine + water) system based on potentiometric determination at T = (298.2, 303.2, and 308.2) K. J. Chem. Eng. Data 60, 2879–2894 (2015)

    Article  CAS  Google Scholar 

  7. Ghalami-Choobar, B., Sayyadi-Nodehi, F.: Thermodynamic study of the (NaCl + serine + water) mixtures using potentiometric measurements at T = (298.2 and 303.2) K. Fluid Phase Equilib. 380, 48–57 (2014)

    Article  CAS  Google Scholar 

  8. Ma, L., Li, S., Zhai, Q., Jiang, Y., Hu, M.: Thermodynamic study of RbF/CsF in amino acid aqueous solution based on the Pitzer, modified Pitzer, and extended Debye–Hückel models at 298.15 K by a potentiometric method. Ind. Eng. Chem. Res. 52, 11767–11772 (2013)

    Article  CAS  Google Scholar 

  9. Ghalami-Choobar, B., Mirzaie, S.: Thermodynamic study of (KCl + proline + water) system based on potentiometric measurements at T = (298.2 and 303.2) K. J. Mol. Liq. 169, 124–129 (2012)

    Article  CAS  Google Scholar 

  10. Ma, J., Zhang, X., Zhuo, K., Liu, H., Wang, J.: Activity coefficients of CaCl2 in (serine or proline+ water) mixtures at T = 298.15 K. J. Chem. Thermodyn. 42, 689–694 (2010)

    Article  CAS  Google Scholar 

  11. Khavaninzadeh, A., Modarress, H., Taghikhani, V., Khoshkbarchi, M.: Activity coefficients of electrolyte and amino acid in the systems (water + potassium chloride + dl-valine) at T = 298.15 K and (water+ sodium chloride+ l-valine) at T = 308.15 K. J. Chem. Thermodyn. 34, 1297–1309 (2002)

    Article  CAS  Google Scholar 

  12. Rodrıguez-Raposo, R., Fernandez-Merida, L., Esteso, M.: Activity coefficients in (electrolyte + amino acid)(aq). The dependence of the ion–zwitterion interactions on the ionic strength and on the molality of the amino acid analysed in terms of Pitzer’s equations. J. Chem. Thermodyn. 26, 1121–1128 (1994)

    Article  Google Scholar 

  13. Marino, T., Russo, N., Tocci, E., Toscano, M.: Gas-phase acidity of proline from density functional computations. Int. J. Quantum Chem. 84, 264–268 (2001)

    Article  CAS  Google Scholar 

  14. Romano, E., Suvire, F., Manzur, M., Wesler, S., Enriz, R., Molina, M.: Dielectric properties of proline: hydration effect. J. Mol. Liq. 126, 43–47 (2006)

    Article  CAS  Google Scholar 

  15. Huang, X., Li, S.N., Zhai, Q., Jiang, Y., Hu, M.: Thermodynamic investigation of RbF + Rb2SO4 + H2O and CsF + Cs2SO4 + H2O ternary systems by potentiometric method at 298.2 K. Fluid Phase Equilib. 433, 31–39 (2017)

    Article  CAS  Google Scholar 

  16. Jamehbozorg, B., Sadeghi, R.: Evaluation of the effect of ionic-liquids as soluting-out agents on the solubility of carbohydrates in aqueous solutions. Fluid Phase Equilib. 459, 73–84 (2018)

    Article  CAS  Google Scholar 

  17. Skafi, M., El Guendouzi, M.: Solubility and thermodynamic properties in mixed ternary aqueous solutions of hexafluoridosilicate salts (Na+, K+ or NH4+) at T= 353.15 K. Fluid Phase Equilib. 468, 38–48 (2018)

    Article  CAS  Google Scholar 

  18. Saeger, R.B., Lee, G.H., Gordon, P.A.: Vapor–liquid equilibrium of metal dialkyldithiophosphates: an analysis with the statistical associating fluid theory. Fluid Phase Equilib. 486, 48–58 (2019)

    Article  CAS  Google Scholar 

  19. Shafaghat-Lonbar, M., Ghalami-Choobar, B.: Thermodynamic properties determination and modeling of the (CaCl2 + Ca(NO3)2 + l-glutamine + H2O) system using potentiometric measurements at T = (293.2, 303.2, and 313.2) K. J. Chem. Eng. Data 63, 519–533 (2018)

    Article  CAS  Google Scholar 

  20. Bretti, C., Giacalone, A., Gianguzza, A., Milea, D., Sammartano, S.: Modeling S-carboxymethyl-L-cysteine protonation and activity coefficients in sodium and tetramethylammonium chloride aqueous solutions by SIT and Pitzer equations. Fluid Phase Equilib. 252, 119–129 (2007)

    Article  CAS  Google Scholar 

  21. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  22. Archer, D.G.: Thermodynamic properties of the NaCl + H2O system. II. Thermodynamic properties of NaCl (aq), NaCl·2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  23. Renon, H., Prausnitz, J.M.: Local compositions in thermodynamic excess functions for liquid mixtures. AIChE J. 14, 135–144 (1968)

    Article  CAS  Google Scholar 

  24. Maurer, G., Prausnitz, J.: On the derivation and extension of the UNIQUAC equation. Fluid Phase Equilib. 2, 91–99 (1978)

    Article  CAS  Google Scholar 

  25. Kirkwood, J.: Theoretical studies upon dipolar ions. Chem. Rev. 24, 233–251 (1939)

    Article  CAS  Google Scholar 

  26. Kirkwood, J.G.: Theory of solutions of molecules containing widely separated charges with special application to zwitterions. J. Chem. Phys. 2, 351–361 (1934)

    Article  CAS  Google Scholar 

  27. Chen, C.C., Evans, L.B.: A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE J. 32, 444–454 (1986)

    Article  CAS  Google Scholar 

  28. Chen, C.C., Zhu, Y., Evans, L.B.: Phase partitioning of biomolecules: solubilities of amino acids. Biotechnol. Prog. 5, 111–118 (1989)

    Article  CAS  Google Scholar 

  29. Pitzer, K.S.: Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991)

    Google Scholar 

  30. Pitzer, K.S., Kim, J.J.: Thermodynamics of electrolytes. IV. Activity and osmotic coefficients for mixed electrolytes. J. Am. Chem. Soc. 96, 5701–5707 (1974)

    Article  CAS  Google Scholar 

  31. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate–potassium nitrate–water. J. Phys. Chem. 90, 3009–3013 (1986)

    Article  CAS  Google Scholar 

  32. Pitzer, K.S., Simonson, J.M.: Thermodynamics of multicomponent, miscible, ionic systems: theory and equations. J. Phys. Chem. 90, 3005–3009 (1986)

    Article  CAS  Google Scholar 

  33. Clegg, S.L., Pitzer, K.S., Brimblecombe, P.: Thermodynamics of multicomponent, miscible, ionic solutions. Mixtures including unsymmetrical electrolytes. J. Phys. Chem. 96, 9470–9479 (1992)

    Article  CAS  Google Scholar 

  34. Clegg, S.L., Pitzer, K.S.: Thermodynamics of multicomponent, miscible, ionic solutions: generalized equations for symmetrical electrolytes. J. Phys. Chem. 96, 3513–3520 (1992)

    Article  CAS  Google Scholar 

  35. Fernández-Mérida, L., Rodríguez-Raposo, R., García-García, G.E., Esteso, M.A.: Modification of the Pitzer equations for application to electrolyte + polar non-electrolyte mixtures. J. Electroanal. Chem. 379, 63–69 (1994)

    Article  Google Scholar 

  36. Fernández-Mérida, L., Garcıa-Garcıa, G.E., Raposo, R.R., Esteso, M.A.: Activity coefficients for aminoacid+ electrolyte mixtures by using Pitzer equations: dl-α-amino-n-butyric acid in mixed electrolyte solutions of neutral, acid and alkaline pH values. J. Electroanal. Chem. 466, 38–44 (1999)

    Article  Google Scholar 

  37. Raposo, R.R., Garcı́a-Garcı́a, G.E., Fernández-Mérida, L., Esteso, M.A.: Applicability of the modified Pitzer equations to the fitting of activity coefficients in electrolyte–aminoacid aqueous mixtures: the case of NaCl + β-alanine at 298.15 K. J. Electroanal. Chem. 454, 59–63 (1998)

    Article  CAS  Google Scholar 

  38. Khoshkbarchi, M.K., Vera, J.H.: A perturbed hard-sphere model with mean spherical approximation for the activity coefficients of amino acids in aqueous electrolyte solutions. Ind. Eng. Chem. Res. 35, 4755–4766 (1996a)

    Article  CAS  Google Scholar 

  39. Kamali-Ardakani, M., Modarress, H., Taghikhani, V., Khoshkbarchi, M.: Activity coefficients of glycine in aqueous electrolyte solutions: experimental data for (H2O + KCl + glycine) at T = 298.15 K and (H2O + NaCl + glycine) at T = 308.15 K. J. Chem. Thermodyn. 33, 821–836 (2001)

    Article  CAS  Google Scholar 

  40. Khavaninzadeh, A., Modarress, H., Taghikhani, V., Khoshkbarchi, M.: Measurement of activity coefficients of amino acids in aqueous electrolyte solutions: experimental data for the systems (H2O + NaBr + glycine) and (H2O + NaBr + l-valine) at T = 298.15 K. J. Chem. Thermodyn. 35(9), 1553–1565 (2003)

    Article  CAS  Google Scholar 

  41. Soto-Campos, A.M., Khoshkbarchi, M.K., Vera, J.H.: Activity coefficients of the electrolyte and the amino acid in water + NaNO3 + glycine and water + NaCl + DL-methionine systems at 298.15 K. Biophys. Chem. 67, 97–105 (1997)

    Article  CAS  PubMed  Google Scholar 

  42. Soto-Campos, A.M., Khoshkbarchi, M.K., Vera, J.H.: Effect of the anion and the cation of an electrolyte on the activity coefficient of DL-alanine in aqueous solutions. Fluid Phase Equilib. 142, 193–204 (1998)

    Article  CAS  Google Scholar 

  43. Khoshkbarchi, M.K., Vera, J.H.: Measurement and modeling of activities of amino acids in aqueous salt systems. AIChE J. 42, 2354–2364 (1996b)

    Article  CAS  Google Scholar 

  44. Scatchard, G., Prentiss, S.: Freezing points of aqueous solutions. VIII. Mixtures of sodium chloride with glycine and ethyl alcohol. J. Am. Chem. Soc. 56, 2314–2319 (1934)

    Article  CAS  Google Scholar 

  45. Pazuki, G., Rohani, A., Dashtizadeh, A.: Correlation of the mean ionic activity coefficients of electrolytes in aqueous amino acid and peptide systems. Fluid Phase Equilib. 231, 171–175 (2005)

    Article  CAS  Google Scholar 

  46. Wilson, G.M.: Vapor–liquid equilibrium. XI. A new expression for the excess free energy of mixing. J. Am. Chem. Soc. 86, 127–130 (1964)

    Article  CAS  Google Scholar 

  47. Ali, H., Sarkisian, E.: Thermodynamics of vapor–liquid equilibrium in mixed solvent electrolyte systems. Sci. Iran 5, 67–81 (1998)

    Google Scholar 

  48. Haghtalab, A., Vera, J.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE J. 34, 803–813 (1988)

    Article  CAS  Google Scholar 

  49. Held, C., Reschke, T., Müller, R., Kunz, W., Sadowski, G.: Measuring and modeling aqueous electrolyte/amino-acid solutions with ePC-SAFT. J. Chem. Thermodyn. 68, 1–12 (2014)

    Article  CAS  Google Scholar 

  50. Lee, B.-S., Kim, K.-C.: Modeling and measurements of the activity coefficients and solubilities of amino acids in the L-valine/electrolyte and L-proline/electrolyte aqueous solutions. Eng. Res. 50, 93–105 (2012)

    CAS  Google Scholar 

  51. Nasiri-Lohehsara, T., Ghalami-Choobar, B.: Thermodynamic study of (KCl + N,N-dimethylformamide + water) system based on potentiometric measurements. J. Chem. Eng. Data 63(8), 2660–2670 (2018)

    Article  CAS  Google Scholar 

  52. Ghalami-Choobar, B., Shafaghat-Lonbar, M., Mossayyebzadeh-Shalkoohi, P.: Activity coefficients determination and thermodynamic modeling of (NaCl + Na2HCit + glucose + H2O) system at T = (298.2 and 308.2) K. J. Mol. Liq. 212, 922–929 (2015)

    Article  CAS  Google Scholar 

  53. Bates, R.G.: Determination of pH: Theory and Practice, 2nd edn. Wiley, New York (1964)

    Google Scholar 

  54. Dehghani, M., Modarress, H., Monirfar, M.: Measurement and modelling of mean activity coefficients of aqueous mixed electrolyte solution containing glycine. J. Chem. Thermodyn. 38, 1049–1053 (2006)

    Article  CAS  Google Scholar 

  55. Pitzer, K.S., Peiper, J.C., Busey, R.: Thermodynamic properties of aqueous sodium chloride solutions. J. Phys. Chem. Ref. Data 13, 1–102 (1984)

    Article  CAS  Google Scholar 

  56. Arakawa, T., Timasheff, S.: The stabilization of proteins by osmolytes. Biophys. J. 47, 411–414 (1985)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the graduate office of University of Guilan for supporting of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Ghalami-Choobar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 176 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafaghat-Lonbar, M., Ghalami-Choobar, B. Thermodynamic Properties: Determination of the (NaCl + l-Proline + H2O) Ternary System Based on Potentiometric Measurements at T = (293.2, 303.2 and 313.2) K. J Solution Chem 50, 49–72 (2021). https://doi.org/10.1007/s10953-020-01043-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01043-6

Keywords

Navigation