Skip to main content
Log in

A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The experimental densities of a local anesthetical drug, tetracaine hydrochloride (TC·HCl) in aqueous binary (H2O + TC·HCl) solutions and aqueous ternary electrolytic solutions (H2O + NaCl/KCl + TC·HCl) are reported at 288.15, 293.15, 298.15, 303.15 and 308.15 K in the dilute concentration region. The densities, were used to calculate apparent molar volumes (\(V_{\phi }\)) at the finite concentrations of TC·HCl at the studied temperatures. The coefficient of thermal expansion (α) of solutions and the apparent molar expansivity (\(E_{\phi }\)) of the solute, at 293.15, 298.15 and 303.15 K are also obtained. The limiting apparent molar volume (\(V_{\phi }^{0}\)) and limiting apparent molar expansivity (\(E_{\phi }^{0}\)) of TC·HCl were estimated using extrapolation methods. It is noted that the solute expansivity goes through a minimum in water as a function of temperature and at lower concentrations of electrolytes. By using the \(V_{\phi }^{0}\) data of the studied binary and ternary systems, the values of transfer volumes, that is, volume changes due to transfer (\(\Delta_{{{\text{tr}}}} V_{\phi }^{0}\)) from aqueous to mixed electrolyte solutions, are estimated. The observed \(\Delta_{{{\text{tr}}}} V_{\phi }^{0}\) values are found to be both temperature and concentration dependent. The excess molar volume of mixing (\(\Delta_{\text{m}} V^{{\text{E}}}\)) are also calculated at 298.15 K. The volume changes due to micellization are small and the sign and magnitude depend upon the structure making and breaking abilities of the salt. It is suggested that the micelles involved are of the stacking type and not in the form of linear aggregates. The hydration shell water structure around the cations seems to be controlled by temperature and the nature of the perturbing ions. The results are explained in terms of unique stacking type interaction, akin to micelles but differing in details on the mode of interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Matsuki, H., Hashimoto, S., Kaneshina, S., Yamanaka, M.: Surface adsorption and volume behavior of local anesthetics. Langmuir 10, 1882–1887 (1994)

    CAS  Google Scholar 

  2. Franks, F.: Aqueous solution interactions of low molecular weight species. The applicability of model studies in biochemical thermodynamics. In: Jones, M.N. (ed.) Biochemical Thermodynamics. Elsevier, New York (1979) (Chap. 2)

    Google Scholar 

  3. Fukushima, D., Kaiser, E.T., Kezday, F.J., Kroom, D.J., Kupferberg, J.P., Yokoyama, S.: Rational design of synthetics models for lipoproteins. Ann. N.Y. Acad. Sci. 348, 365–377 (1980)

    CAS  Google Scholar 

  4. Györke, S., Lukyanenko, V., Györke, I.: Dual effects of tetracaine on spontaneous calcium release in rat ventricular myocytes. J. Physiol. 500, 297–309 (1997)

    PubMed  PubMed Central  Google Scholar 

  5. Malladi, L., Tangde, V.M., Dhondge, S.S., Deshmukh, D.W., Jengathe, S.P.: Effect of NaCl and KCl on volumetric and acoustic behavior of procaine hydrochloride in aqueous solution at different temperatures (288.15, 298.15 and 308.15) K. J. Chem. Thermodyn. 112, 166–177 (2017)

    CAS  Google Scholar 

  6. Hansch, C.: Quantitative approach to biochemical structure–activity relationships. Acc. Chem. Res. 2, 232–239 (1969)

    CAS  Google Scholar 

  7. Gupta, S.P.: Quantitative structure–activity relationship studies on anticancer drugs. Chem. Rev. 94, 1507–1551 (1994)

    CAS  Google Scholar 

  8. Iqbal, M., Jamal, M.A., Ahmed, M., Ahmed, B.: Partial molar volumes of some drugs in water and ethanol at 35 °C. Can. J. Chem. 72, 1076–1079 (1994)

    CAS  Google Scholar 

  9. Merino, C., Junquera, E., Jimenez-Barbero, J., Aicart, E.: Effect of the presence of β-cyclodextrin on the solution behavior of procaine hydrochloride. Spectroscopic and thermodynamic studies. Langmuir 16, 1557–1565 (2000)

    CAS  Google Scholar 

  10. Delgado, D.R., Jimenez-Kairuz, A.F., Manzo, R.M., Vargas, E.F., Martinez, F.: Apparent molar volumes of the anesthetic drugs procaine-HCl and lidocaine-HCl in water at temperatures from 278.15 to 313.15 K. Rev. Colomb. Cienc. Quim. Farm. 39, 57–67 (2010)

    Google Scholar 

  11. Shaikh, V.R., Dagade, D.H., Hundiwale, D.G., Patil, K.J.: Volumetric studies of aqueous solutions of local anesthetical drug compounds [hydrochlorides of procaine (PC HCl), lidocaine (LC HCl) and tetracaine (TC HCl)] at 298.15 K. J. Mol. Liq. 164, 239–242 (2011)

    CAS  Google Scholar 

  12. Iqbal, M., Verrall, R.E.: Apparent molar volume and adiabatic compressibility studies of aqueous solutions of some drug compounds at 25 °C. Can. J. Chem. 67, 727–735 (1989)

    CAS  Google Scholar 

  13. Shaikh, V.R., Dagade, D.H., Terdale, S.S., Hundiwale, D.G., Patil, K.J.: Activity and activity coefficient studies of aqueous binary solutions of procaine, lidocaine and tetracaine hydrochloride at 298.15 K. J. Chem. Eng. Data 57, 3114–3122 (2012)

    CAS  Google Scholar 

  14. Shaikh, V.R., Terdale, S.S., Hundiwale, D.G., Patil, K.J.: Thermodynamic studies of ionic interactions for the drug ranitidine hydrochloride in aqueous solutions at 298.15 K. J. Solution Chem. 44, 1875–1890 (2015)

    CAS  Google Scholar 

  15. Mondal, S., Dhondge, S.S., Paliwal, L.J., Tangde, V.M., Jengathe, S.P.: Physicochemical properties of an anticonvulsant drug sodium valproate in aqueous and in mixed aqueous solutions at different temperatures. J. Chem. Thermodyn. 90, 147–157 (2015)

    CAS  Google Scholar 

  16. Bhattacharya, D.M., Pratap, U.R., Wankhade, A.V., Zodape, S.P.: Volumetric and ultrasonic approach in the investigation of critical micellar phenomenon of amphiphilic drugs in aqueous solutions at different temperatures. J. Mol. Liq. 214, 117–127 (2016)

    CAS  Google Scholar 

  17. Shaikh, V.R., Salunke, V.R., Behare, K.P., Patil, S.E., Borse, A.U., Patil, K.J.: Volumetric properties of local anesthetical drug lidocaine hydrochloride in aqueous and in aqueous NaCl solutions at different temperatures. J. Chem. Eng. Data 63, 1498–1506 (2018)

    CAS  Google Scholar 

  18. Terdale, S.S., Dagade, D.H., Patil, K.J.: Thermodynamic studies of drug–α-cyclodextrin interactions in water at 298.15 K: promazine hydrochloride/chlorpromazine hydrochloride + α-cyclodextrin + H2O systems. J. Phys. Chem. B 111, 13645–13652 (2007)

    CAS  PubMed  Google Scholar 

  19. Banipal, T.S., Beri, A., Kaur, N., Banipal, P.K.: Volumetric, viscometric and spectroscopic approach to study the solvation behavior of xanthine drugs in aqueous solutions of NaCl at T = 288.15–318.15 K and at p = 101.325 kPa. J. Chem. Eng. Data 62, 20–34 (2017)

    CAS  Google Scholar 

  20. Shaikh, V.R., Terdale, S.S., Hundiwale, D.G., Patil, K.J.: Thermodynamic studies of drug–α-cyclodextrin interactions in water at 298.15 K: procaine hydrochloride/lidocaine hydrochloride/tetracaine hydrochloride/ranitidine hydrochloride + α-cyclodextrin + H2O systems. J. Chem. Thermodyn. 68, 161–168 (2014)

    CAS  Google Scholar 

  21. Millero, F.J.: The apparent and partial molal volume of aqueous sodium chloride solutions at various temperatures. J. Phys. Chem. 74, 356–362 (1970)

    CAS  Google Scholar 

  22. Fortier, J.L., Leduc, P.A., Desnoyers, J.E.: Thermodynamics properties of alkali halides. II. Enthalpies of dilution and heat capacities in water at 25 °C. J. Solution Chem. 3, 323–349 (1974)

    CAS  Google Scholar 

  23. Vaslow, F.: The apparent molal volumes of the alkali chlorides in aqueous solution and evidence for salt-induced structure transitions. J. Phys. Chem. 70, 2286–2294 (1966)

    CAS  Google Scholar 

  24. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of the alkali halides in water at 25 °C. Influence of structural hydration interactions in the concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)

    CAS  Google Scholar 

  25. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions, 3rd edn. Reinhold Publishing Corporation, New York (1958)

    Google Scholar 

  26. Redlich, O., Meyer, D.M.: The molal volumes of electrolytes. Chem. Rev. 64, 221–227 (1964)

    CAS  Google Scholar 

  27. Wen, W.Y., Saito, S.: Apparent and partial molal volumes of five symmetrical tetraalkylammoniumbromides in aqueous solutions. J. Phys. Chem. 68, 2639–2644 (1964)

    CAS  Google Scholar 

  28. Millero, F.J.: The molal volumes of electrolytes. Chem. Rev. 71, 147–176 (1971)

    CAS  Google Scholar 

  29. Burchfield, T.E., Woolley, E.M.: Model for thermodynamics of ionic surfactant solutions. 1. Osmotic and activity coefficients. J. Phys. Chem. 88, 2149–2155 (1984)

    CAS  Google Scholar 

  30. Resenholm, J.B.: On the characterization of micelle formation by means of experimental thermodynamic quantities. Colloid Polym. Sci. 259, 1116–1123 (1981)

    Google Scholar 

  31. Taboada, P., Attwood, D., Ruso, J.M., Garcia, M., Mosquera, V.: Thermodynamic properties of some antidepressant drugs in aqueous solution. Langmuir 17, 173–177 (2001)

    CAS  Google Scholar 

  32. Wang, J., Wang, H., Zhang, S., Zhang, H., Zhao, Y.: Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [Cnmim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions. J. Phys. Chem. B 111, 6181–6188 (2007)

    CAS  PubMed  Google Scholar 

  33. DeLisi, R., Ostiguy, C., Perron, G., Desnoyers, J.E.: Complete thermodynamic properties of nonyl- and decyltrimethylammonium bromides in water. J. Colloid Interface Sci. 71, 147–166 (1979)

    CAS  Google Scholar 

  34. Patil, R.S., Shaikh, V.R., Patil, P.D., Borse, A.U., Patil, K.J.: Volumetric properties of alkylammonium bromides in aqueous solutions. J. Chem. Eng. Data 61, 195–206 (2016)

    CAS  Google Scholar 

  35. Patil, K., Mehta, G.: Volume and compressibility changes in mixed-salt solutions at 25 °C. J. Chem. Soc. Faraday Trans. I 83, 2467–2474 (1987)

    CAS  Google Scholar 

  36. Patil, K., Mehta, G.: Volume and compressibility changes in aqueous mixed-salt solutions at 25 °C. J. Chem. Soc. Faraday Trans. I 84, 2297–2303 (1988)

    CAS  Google Scholar 

  37. Mukerjee, P.: The nature of the association equilibria and hydrophobic bonding in aqueous solutions of association colloids. Adv. Colloid Interface Sci. 1, 242–275 (1967)

    Google Scholar 

  38. Musbally, G.M., Perron, G., Desnoyers, J.E.: Apparent molal volumes and heat capacities of ionic surfactants in water at 25 °C. J. Colloid Interfac. Sci. 48, 494–501 (1974)

    CAS  Google Scholar 

  39. Desnoyers, J.E., DeLisi, R., Perron, G.: Thermochemistry of aqueous micellar systems. Pure Appl. Chem. 52, 433–444 (1980)

    CAS  Google Scholar 

  40. Ray, G.B., Chakraborty, I., Ghosh, S., Moulik, S.P., Palepu, R.: Self-aggregation of alkyltrimethylammonium bromides (C10-, C12-, C14-, and C16-TAB) and their binary mixtures in aqueous medium: a critical and comprehensive assessment of interfacial behavior and bulk properties with reference to two types of micelle formation. Langmuir 21, 10958–10967 (2005)

    CAS  PubMed  Google Scholar 

  41. Franks, F., Smith, H.T.: The association and hydration of sodium dodecyl sulfate in the submicellar concentration range. J. Phys. Chem. 68, 3581–3584 (1964)

    CAS  Google Scholar 

  42. Benrraou, M., Bales, B.L., Zana, R.: Effect of the nature of the counterion on the properties of anionic surfactants. 1. Cmc, ionization degree at the cmc and aggregation number of micelles of sodium, cesium, tetramethylammonium, tetraethylammonium, tetrapropylammonium, and tetrabutylammonium dodecyl sulfates. J. Phys. Chem. B 107, 13432–13440 (2003)

    CAS  Google Scholar 

  43. Nightingale, E.R., Jr.: Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959)

    CAS  Google Scholar 

  44. Nightingale, E.R.: On the specificity of electrolyte solvation. Viscosity and infrared characterization of ionic hydration. In: Conway, B.E., Barradas, R.G. (eds.) Chemical Physics of Ionic Solutions. John Wiley, New York (1965) (Chap. 7)

    Google Scholar 

  45. Jenkins, D.H., Marcus, Y.: Viscosity B-coefficients of ions in solution. Chem. Rev. 95, 2695–2724 (1995)

    CAS  Google Scholar 

  46. Marcus, Y.: Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109, 1346–1370 (2009)

    CAS  PubMed  Google Scholar 

  47. Gurney, R.W.: Ionic Processes in Solutions. McGraw Hill, New York (1954)

    Google Scholar 

  48. Matsuki, H., Ishikawa, R., Kaneshina, S., Kamaya, H., Ueda, I.: Differential scanning calorimetric study on the Krafft phenomenon of local anesthetics. J. Colloid Interface Sci. 181, 362–369 (1996)

    CAS  Google Scholar 

  49. Satake, H., Matsuki, H., Kaneshinab, S.: Colloidal properties of aqueous local anesthetic tetracaine solutions. Colloids Surf. A 7, 135–140 (1993)

    Google Scholar 

  50. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein Chem. 14, 1–63 (1959)

    CAS  PubMed  Google Scholar 

  51. Jolicoeur, C.: Methods of Biochemical Analysis, vol. 27. Wiley, New York (1981)

    Google Scholar 

  52. Pace, C.N., Treviño, S., Prabhakaran, E., Martin Scholtz, J.: Phil. Trans. Roy. Soc. London B 359, 1225–1235 (2004)

    CAS  PubMed  Google Scholar 

  53. Eley, D.D.: On the solubility of gases. Part I-The inert gases in water. Tran. Faraday Soc. 35, 1281–1293 (1939)

    CAS  Google Scholar 

  54. Neal, J.L., Goring, D.A.I.: Volume–temperature relations of hydrophobic and hydrophilic nonelectrolytes in water. J. Phys. Chem. 74, 658–664 (1970)

    CAS  Google Scholar 

  55. Hepler, L.G.: Thermal expansion and structure in water and aqueous solutions. Can. J. Chem. 47, 4613–4617 (1969)

    CAS  Google Scholar 

  56. Fisicaro, E., Compari, C., Duce, E., Biemmi, M., Peroni, M., Braibanti, A.: Thermodynamics of micelle formation in water, hydrophobic processes and surfactant self-assemblies. Phys. Chem. Chem. Phys. 10, 3903–3914 (2008)

    CAS  PubMed  Google Scholar 

  57. Kresheck, G.C.: Surfactants. In: Franks, F. (ed.) Water-A Comprehensive Treatise, vol. IV. Plenum Press, New York (1974) (Chap. 2)

    Google Scholar 

  58. Goddard, E.D., Benson, G.C.: Conductivity of aqueous solutions of some paraffin chain salts. Can. J. Chem. 35, 986–991 (1957)

    CAS  Google Scholar 

  59. Galan, J.J., Gonzalez-Perez, A., Rodriquez, J.R.: Micellization of dodecyldimethylethylammonium bromide in aqueous solution. J. Therm. Anal. Calorim. 72, 465–470 (2003)

    CAS  Google Scholar 

  60. Patil, K., Pawar, R., Talap, P.: Self-aggregation of methylene blue in aqueous medium and aqueous solutions of urea and Bu4NBr. Phys. Chem. Chem. Phys. 2, 4313–4317 (2000)

    CAS  Google Scholar 

  61. Duff, D.G., Giles, C.H.: Dyestuffs. In: Franks, F. (ed.) Water-A Comprehensive Treatise, vol. IV. Plenum Press, New York (1974) (Chap. 3)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kesharsingh J. Patil.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 960 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, V.R., Pinjari, A.R., Patil, V.K. et al. A Volumetric Study of Tetracaine Hydrochloride in Aqueous and in Aqueous Electrolyte Solutions at Different Temperatures. J Solution Chem 49, 1510–1535 (2020). https://doi.org/10.1007/s10953-020-01040-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01040-9

Keywords

Navigation