Skip to main content
Log in

A Modification of UNIQUAC Model for Electrolyte Solutions Based on the Local Composition Concept

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In the present study, a thermodynamic model is developed to predict the phase equilibrium of electrolyte solutions. In this model the Pitzer–Debye–Hückel equation was used to calculate the long-range contribution of the activity coefficient. To take into account the short-rang part of activity coefficient a new modified UNIQUAC-based model was developed. The model was applied for 18 binary electrolyte solutions. Results show that the model presented reproduces the osmotic coefficients of electrolyte solutions accurately to high concentration levels of salt. Comparison of standard deviation of the model and E-NRTL and E-UNIQUAC-NRF models was performed in the manuscript.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haghtalab, A., Peyvandi, K.: Electrolyte-UNIQUAC-NRF model for the correlation of the mean activity coefficient of electrolyte solutions. Fluid Phase Equilib. 281, 163–171 (2009)

    Article  CAS  Google Scholar 

  2. Mazloumi, S.H.: Representation of activity and osmotic coefficients of electrolyte solutions using non-electrolyte Wilson–NRF model with ion-specific parameters. Fluid Phase Equilib. 388, 31–36 (2015)

    Article  CAS  Google Scholar 

  3. Zhao, E., Yu, M., Sauvé, R.E., Khoshkbarchi, M.K.: Extension of the Wilson model to electrolyte solutions. Fluid Phase Equilib. 173, 161–175 (2000)

    Article  CAS  Google Scholar 

  4. Maribo-Mogensen, B., Kontogeorgis, G.M., Thomsen, K.: Comparison of the Debye–Hückel and the mean spherical approximation theories for electrolyte solutions. Ind. Eng. Chem. Res. 51, 5353–5363 (2012)

    Article  CAS  Google Scholar 

  5. Kontogeorgis, G.M., Maribo-Mogensen, B., Thomsen, K.: The Debye–Hückel theory and its importance in modeling electrolyte solutions. Fluid Phase Equilib. 462, 130–152 (2018)

    Article  CAS  Google Scholar 

  6. Bromley, L.A.: Thermodynamic properties of strong electrolytes in aqueous solutions. AIChE 19, 313–320 (1973)

    Article  CAS  Google Scholar 

  7. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  8. Bakhshi, H., Mobalegholeslam, P.: Phase equilibria calculations of electrolyte solutions containing water–polymer–salt using a new thermodynamic model, applicable in aqueous two phase systems. Fluid Phase Equilib. 434, 222–232 (2017)

    Article  CAS  Google Scholar 

  9. Chen, C.C., Britt, H.I., Boston, J., Evans, L.: Local composition model for excess Gibbs energy of electrolyte systems. Part I: Single solvent, single completely dissociated electrolyte systems. AIChE 28, 588–596 (1982)

    Article  CAS  Google Scholar 

  10. Haghtalab, A., Vera, J.: A nonrandom factor model for the excess Gibbs energy of electrolyte solutions. AIChE 34, 803–813 (1988)

    Article  CAS  Google Scholar 

  11. Razavi, S.M., Haghtalab, A., Khanchi, A.R.: An electrolyte non-random-UNIQUAC model for thermodynamic modeling of binary and multicomponent aqueous electrolyte systems. J. Solution Chem. 48, 624–657 (2019)

    Article  CAS  Google Scholar 

  12. Boukhalfa, N., Méniai, A.-H.: Assessment of a thermodynamic model for aqueous electrolyte systems. Int. J. Hydrogen Energy 43, 5358–5364 (2018)

    Article  CAS  Google Scholar 

  13. Pitzer, K.S.: Electrolytes. From dilute solutions to fused salts. J. Am. Chem. Soc. 102, 2902–2906 (1980)

    Article  CAS  Google Scholar 

  14. Bradley, D.J., Pitzer, K.S.: Thermodynamics of electrolytes. 12. Dielectric properties of water and Debye–Hückel parameters to 350. degree. C and 1 kbar. J. Phys. Chem. 83, 1599–1603 (1979)

    Article  CAS  Google Scholar 

  15. Simonson, J.M., Pitzer, K.S.: Thermodynamics of multicomponent, miscible ionic systems: the system lithium nitrate–potassium nitrate–water. J. Phys. Chem. 90, 3009–3013 (1986)

    Article  CAS  Google Scholar 

  16. Hill, T.: An Introduction to Statistical Thermodynamics, pp. 209–211. General Publishing Company, Toronto, Canada (1986)

  17. Chen, C.C., Evans, L.B.: A local composition model for the excess Gibbs energy of aqueous electrolyte systems. AIChE 32, 444–454 (1986)

    Article  CAS  Google Scholar 

  18. Pazuki, G., Nikookar, M.: A new local composition model for predicting of activity coefficient and solubility of amino acids and peptides in water. Biochem. Eng. J. 28, 44–49 (2006)

    Article  CAS  Google Scholar 

  19. Messnaoui, B., Ouiazzane, S., Bouhaouss, A., Bounahmidi, T.: A modified electrolyte-Uniquac model for computing the activity coefficient and phase diagrams of electrolytes systems. Calphad 32, 566–576 (2008)

    Article  CAS  Google Scholar 

  20. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni-univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)

    Article  CAS  Google Scholar 

  21. Goldberg, R.N.: Evaluated activity and osmotic coefficients for aqueous solutions: thirty-six uni-bivalent electrolytes. J. Phys. Chem. Ref. Data 10, 671–764 (1981)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support of Babol Noshirvani University of Technology for this study, through Grant Program No. BNUT/390058/97.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bakhshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhshi, H., Mobalegholeslam, P. A Modification of UNIQUAC Model for Electrolyte Solutions Based on the Local Composition Concept. J Solution Chem 49, 1485–1496 (2020). https://doi.org/10.1007/s10953-020-01036-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01036-5

Keywords

Navigation