Skip to main content
Log in

The Effects of Dissolved Hydrophobic and Hydrophilic Groups on Water Structure

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In this work, Raman spectroscopy is employed to investigate the effects of hydrophobic and hydrophilic groups on water structure. In aqueous methanol, ethanol, 1-propanol solutions, the addition of methylic groups (-CH3) raises the intensity ratio of the 3430 cm−1 sub-band to the 3220 cm−1 peak, and also increases the intensity of free OH vibrations. From our recent studies, this means that the increase of hydrophobic groups raises the ratio of DA (single donor-single acceptor) to DDAA (double donor-double acceptor) hydrogen bonding. Additionally, increasing the hydrophilic groups (–OH) as 1-propanol, 1,2-propanediol and 1,2,3-propanetriol solutions, also increases the ratio of DA to DDAA structural motifs, but decreases the free OH vibrations. The results of this study do not support the “iceberg” model of hydrophobic effects. Additionally, the dissolved hydrophobic and hydrophilic groups may have different effects on free OH vibrations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Frank, H.S., Evans, M.W.: Free volume and entropy in condensed systems III. Entropy in binary liquid mixtures; partial molal entropy in dilute solutions; structure and thermodynamics in aqueous electrolytes. J. Chem. Phys. 13, 507–532 (1945)

  2. Kauzmann, W.: Some factors in the interpretation of protein denaturation. Adv. Protein. Chem. 13, 1–63 (1959)

    Google Scholar 

  3. Tanford, C.: Interfacial free energy and the hydrophobic effect. Proc. Natl. Acad. Sci. U.S.A. 76, 4175–4176 (1979)

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Southall, N.T., Dill, K.A., Haymet, A.D.J.: A view of the hydrophobic effect. J. Phys. Chem. B 106, 521–533 (2002)

    CAS  Google Scholar 

  5. Chandler, D.: Interfaces and the driving force of hydrophobic assembly. Nature 437, 640–647 (2005)

    CAS  PubMed  Google Scholar 

  6. Ball, P.: Water as an active constituent in cell biology. Chem. Rev. 108, 74–108 (2008)

    CAS  PubMed  Google Scholar 

  7. Davis, J.G., Gierszal, K.P., Wang, P., Ben-Amotz, D.: Water structural transformation at molecular hydrophobic interfaces. Nature 491, 582–585 (2012)

    CAS  PubMed  Google Scholar 

  8. Galamba, N.: Water’s structure around hydrophobic solutes and the iceberg model. J. Phys. Chem. B 117, 2153–2159 (2013)

    CAS  PubMed  Google Scholar 

  9. Raschke, T.M., Levitt, M.: Nonpolar solutes enhance water structure within hydration shells while reducing interactions between them. Proc. Natl. Acad. Sci. U.S.A. 102, 6777–6782 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Rezus, Y.L.A., Bakker, H.J.: Observation of immobilized water molecules around hydrophobic groups. Phys. Rev. Lett. 99, 148301 (2007)

    CAS  PubMed  Google Scholar 

  11. Grdadolnik, J., Merzel, F., Avbelj, F.: Origin of hydrophobicity and enhanced water hydrogen bond strength near purely hydrophobic solutes. Proc. Natl. Acad. Sci. U.S.A. 114, 322–327 (2017)

    CAS  PubMed  Google Scholar 

  12. Qvist, J., Halle, B.: Thermal signature of hydrophobic hydration dynamics. J. Am. Chem. Soc. 130, 10345–10353 (2008)

    CAS  PubMed  Google Scholar 

  13. Buchanan, P., Aldiwan, N., Soper, A.K., Creek, J.L., Koh, C.A.: Decreased structure on dissolving methane in water. Chem. Phys. Lett. 415, 89–93 (2005)

    CAS  Google Scholar 

  14. Lenton, S., Rhys, N.H., Towey, J.J., Soper, A.K., Dougan, L.: Temperature-dependent segregation in alcohol–water binary mixtures is driven by water clustering. J. Phys. Chem. B 122, 7884–7894 (2018)

    CAS  PubMed  Google Scholar 

  15. Turner, J., Soper, A.K., Finney, J.L.: A neutron-diffraction study of tetramethylammonium chloride in aqueous solution. Mol. Phys. 70, 679–700 (1990)

    CAS  Google Scholar 

  16. Bakulin, A.A., Liang, C., Jansen, T.L., Wiersma, D.A., Bakker, H.J., Pshenichnikov, M.S.: Hydrophobic solvation: A 2D IR spectroscopic inquest. Acc. Chem. Res. 42, 1229–1238 (2009)

    CAS  PubMed  Google Scholar 

  17. Lambeth, B.P., Junghans, C., Kremer, K., Clementi, C., Site, L.D.: Communication: On the locality of hydrogen bond networks at hydrophobic interfaces. J. Chem. Phys. 133, 221101 (2010)

    PubMed  Google Scholar 

  18. Silvestrelli, P.L.: Are there immobilized water molecules around hydrophobic groups? Aqueous solvation of methanol from first principles. J. Phys. Chem. B 113, 10728–10731 (2009)

    CAS  PubMed  Google Scholar 

  19. Juurinen, I., Pylkkanen, T., Sahle, C.J., Simonelli, L., Hämäläinen, K., Huotari, S., Hakala, M.: Effect of the hydrophobic alcohol chain length on the hydrogen-bond network of water. J. Phys. Chem. B. 118, 8750–8755 (2014)

    CAS  PubMed  Google Scholar 

  20. Montagna, M., Sterpone, F., Guidoni, L.: Structural and spectroscopic properties of water around small hydrophobic solutes. J. Phys. Chem. B 116, 11695–11700 (2012)

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsenkova, R.: Aquaphotomics: Dynamic spectroscopy of aqueous and biological systems describes peculiarities of water. J. Near Infrared Spectrosc. 17, 303–314 (2009)

    CAS  Google Scholar 

  22. Tsenkova, R.: Aquaphotomics: Water in the biological and aqueous world scrutinized with invisible light. Spectrosc. Eur. 22, 6–10 (2010)

    Google Scholar 

  23. Gowen, A.A., Amigo, J.M., Tsenkova, R.: Characterisation of hydrogen bond perturbations in aqueous systems using aquaphotomics and multivariate curve resolution-alternating least squares. Anal. Chim. Acta 759, 8–20 (2013)

    CAS  PubMed  Google Scholar 

  24. Tsenkova, R., Munćan, J., Pollner, B., Kovacs, Z.: Essentials of aquaphotomics and its chemometrics approaches. Front. Chem. 6, 363 (2018)

    PubMed  PubMed Central  Google Scholar 

  25. Walrafen, G.E., Chu, Y.C.: Linearity between structural correlation length and correlated-proton Raman intensity from amorphous ice and supercooled water up to dense supercritical steam. J. Phys. Chem. 99, 11225–11229 (1995)

    CAS  Google Scholar 

  26. Khoshtariya, D.E., Zahl, A., Dolidze, T.D., Neubrand, A., Eldik, R.A.: Discrimination of diverse (pressure/temperature-dependent/independent) inherent sub-structures in liquid water (D2O) from difference vibrational spectroscopy. J. Phys. Chem. B 108, 14796–14799 (2004)

    CAS  Google Scholar 

  27. Li, F.B., Li, Z.L., Wang, Y., Wang, S.H., Wang, X.J., Sun, C.L., Men. Z.W.: A Raman spectroscopy study on the effects of intermolecular hydrogen bonding on water molecules absorbed by borosilicate glass surface. Spectrochim. Acta A: Mol. Spectrosc. 196, 317–322 (2018)

  28. Kozlovskaya, E.N., Pitsevich, G.A., Malevich, A.E., Doroshenko, O.P., Pogorelov, V.E., Doroshenko, I.Y., Balevicius, V., Sablinskas, S., Kamnev, A.A.: Raman spectroscopic and theoretical study of liquid and solid water within the spectral region 1600–2300 cm−1. Spectrochim. Acta A: Mol. Spectrosc. 196, 406–412 (2018)

    CAS  Google Scholar 

  29. Sun, Q.: The Raman OH stretching bands of liquid water. Vib. Spectrosc. 51, 213–217 (2009)

    CAS  Google Scholar 

  30. Sun, Q.: Raman spectroscopic study of the effects of dissolved NaCl on water structure. Vib. Spectrosc. 62, 110–114 (2012)

    CAS  Google Scholar 

  31. Sun, Q.: Local statistical interpretation for water structure. Chem. Phys. Lett. 568–569, 90–94 (2013)

    Google Scholar 

  32. Aarnoutse, P., Westerhuis, J.: Quantitative Raman reaction monitoring using the solvent as internal standard. Anal. Chem. 77, 1228–1236 (2005)

    CAS  PubMed  Google Scholar 

  33. Nah, S., Kim, D., Chung, H., Han. S. H., Yoon, M. Y.: A new quantitative Raman measurement scheme using teflon as a novel intensity correction standard as well as the sample container. J. Raman Spectrosc. 38, 475–482 (2007)

  34. Park, S., Kim, M., Noh, J., Chung, H., Woo, Y., Lee, J., Kemper, M.S.: Reliable and fast quantitative analysis of active ingredient in pharmaceutical suspension using Raman spectroscopy. Anal. Chim. Acta 593, 46–53 (2007)

    CAS  PubMed  Google Scholar 

  35. Sun, Q., Qin, C.: Raman OH stretching band of water as an internal standard to determine carbonate concentrations. Chem. Geol. 283, 274–278 (2011)

    CAS  Google Scholar 

  36. Sun, Q.: The physical origin of hydrophobic effects. Chem. Phys. Lett. 672, 21–25 (2017)

    CAS  Google Scholar 

  37. Sun, Q., Su, X.W., Cheng, C.B.: The dependence of hydrophobic interactions on solute size. Chem. Phys. 516, 199–205 (2019)

    CAS  Google Scholar 

  38. Sun, Q., Zhang, M.X., Cui, S.: The structural origin of hydration repulsive force. Chem. Phys. Lett. 714, 30–36 (2019)

    CAS  Google Scholar 

  39. Fraley, P.E., Rao, K.N.: High resolution infrared spectra of water vapor: ν1 and ν3 band of H216O. J. Mol. Spectrosc. 29, 348–365 (1969)

    CAS  Google Scholar 

  40. Ludwig, R.: The effect of hydrogen bonding on the thermodynamic and spectroscopic properties of molecular clusters and liquids. Phys. Chem. Chem. Phys. 4, 5481–5487 (2002)

    CAS  Google Scholar 

  41. Buck, U., Huisken, F.: Infrared spectroscopy of size-selected water and methanol clusters. Chem. Rev. 100, 3863–3890 (2000)

    CAS  PubMed  Google Scholar 

  42. Hirabayashi, S., Yamada, K.M.: Infrared spectra of water clusters in krypton and xenon matrices. J. Chem. Phys. 122, 244501 (2005)

    PubMed  Google Scholar 

  43. Pérez, C., Muckle, M.T., Zaleski, D.P., Seifert, N.A., Temelso, B., Shields, G.C., Kisiel, Z., Pate, B.H.: Structures of cage, prism, and book isomers of water hexamer from broadband rotational spectroscopy. Science 236, 897–901 (2012)

    Google Scholar 

  44. Martins, J.B.L., Politi, J.R.S., Garcia, E., Vilela, A.F.A., Gargano, R.: Theoretical study of CH4–CH4, CHF3–CH4, CH4–H2O, and CHF3–H2O dimers. J. Phys. Chem. A 113, 14818–14823 (2009)

    CAS  PubMed  Google Scholar 

  45. Raghavendra, B., Arunan, E.: Hydrogen bonding with a hydrogen bond: The methane–water complex and the penta-coordinate carbon. Chem. Phys. Lett. 467, 37–40 (2008)

    CAS  Google Scholar 

  46. Dore, L., Cohen, R.C., Schmuttenmaer, C.A., Busarow, K.L., Elrod, M.J., Loeser, J.G., Saykally, R.J.: Far infrared vibration-rotation-tunneling spectroscopy and internal dynamics of methane–water: A prototypical hydrophobic system. J. Chem. Phys. 100, 863–876 (1994)

    CAS  Google Scholar 

  47. Fileti, E.E., Chaudhuri, P., Canuto, S.: Relative strength of hydrogen bond interaction in alcohol–water complexes. Chem. Phys. Lett. 400, 494–499 (2004)

    CAS  Google Scholar 

  48. Finneran, I.A., Carroll, P.B., Allodi, M.A., Blake, G.A.: Hydrogen bonding in the ethanol–water dimer. Phys. Chem. Chem. Phys. 17, 24210–24214 (2015)

    CAS  PubMed  Google Scholar 

  49. Nedić, M., Wassermann, T.N., Larseny, R.W., Suhm, M.A.: A combined Raman and infrared jet study of mixed methanol–water and ethanol–water clusters. Phys. Chem. Chem. Phys. 13, 14050–14063 (2011)

    PubMed  Google Scholar 

  50. Fileti, E.E., Castro, M.A., Canuto, S.: Calculations of vibrational frequencies, Raman activities and degrees of depolarization for complexes involving water, methanol and ethanol. Chem. Phys. Lett. 452, 54–58 (2008)

    CAS  Google Scholar 

  51. Galano, A., Narciso-Lopez, M., Francisco-Marquez, M.: Water complexes of important air pollutants: Geometries, complexation energies, concentrations, infrared spectra, and intrinsic reactivity. J. Phys. Chem. A 114, 5796–5809 (2010)

    CAS  PubMed  Google Scholar 

  52. Sun, Q.: The single donor-single acceptor hydrogen bonding structure in water probed by Raman spectroscopy. J. Chem. Phys. 132, 054507 (2010)

    PubMed  Google Scholar 

  53. Crupi, V., Interdonato, S., Longo, F., Migliardo, P., Venuti. V.: A new insight on the hydrogen bonding structures of nanoconfined water: A Raman study. J. Raman Spectrosc. 39, 244–249 (2008)

  54. Scatena, L.F., Brown, M.G., Richmond, G.L.: Water at hydrophobic surfaces: Weak hydrogen bonding and strong orientation effects. Science 292, 908–912 (2001)

    CAS  PubMed  Google Scholar 

  55. Jubb, A.M., Hua, W., Allen, H.C.: Organization of water and atmospherically relevant ions and solutes: Vibrational sum frequency spectroscopy at the vapor/liquid and liquid/solid interfaces. Acc. Chem. Res. 45, 110–119 (2012)

    CAS  PubMed  Google Scholar 

  56. Shen, Y.R., Ostroverkhov, V.: Sum-frequency vibrational spectroscopy on water interfaces: Polar orientation of water molecules at interfaces. Chem. Rev. 106, 1140–1154 (2006)

    CAS  PubMed  Google Scholar 

  57. Richmond, G.L.: Molecular bonding and interactions at aqueous surfaces as probed by vibrational sum frequency spectroscopy. Chem. Rev. 102, 2693–2724 (2002)

    CAS  PubMed  Google Scholar 

  58. Sun, Q., Guo, Y.: Vibrational sum frequency generation spectroscopy of the air/water interface. J. Mol. Liq. 213, 28–32 (2016)

    CAS  Google Scholar 

  59. Tian, C.S., Shen, Y.R.: Sum-frequency vibrational spectroscopic studies of water/vapor interfaces. Chem. Phys. Lett. 470, 1–6 (2009)

    CAS  Google Scholar 

  60. Ji, N., Ostroverkhov, V., Tian, C.S., Shen, Y.R.: Characterization of vibrational resonances of water–vapor interfaces by phase-sensitive sum-frequency spectroscopy. Phys. Rev. Lett. 100, 096102 (2008)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The reviewers and editor are greatly appreciated for providing good suggestions to revise the paper. This work is supported by the National Natural Science Foundation of China (Grant No. 41773050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, Q. The Effects of Dissolved Hydrophobic and Hydrophilic Groups on Water Structure. J Solution Chem 49, 1473–1484 (2020). https://doi.org/10.1007/s10953-020-01035-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01035-6

Keyword

Navigation