Skip to main content
Log in

Thermodynamic and GMDH Modeling of CO2 and H2S Solubility in Aqueous Sulfolane Solution

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The solubility of hydrogen sulfide (H2S) and carbon dioxide (CO2) in mixed solvents were modeled using two approaches. The Gibbs excess energy of mixed solvents such as modified Pitzer as thermodynamic approach and GMDH as an artificial intelligence approaches which both have been adopted to analyze the reported experimental data in literature. The precision of the modified Pitzer and GMDH models are compared with each other and also with experimental data. The obtained results show that the modified Pitzer and GMDH have acceptable agreement with experimental reported data and also GMDH could be an acceptable alternative model for the modified Pitzer one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Shokouhi, M., Jalili, A.H., Zoghi, A.T., Ahari, J.S.: Carbon dioxide solubility in aqueous sulfolane solution. J. Chem. Thermodyn. 132, 62–72 (2019)

    Article  CAS  Google Scholar 

  2. Dicko, M., Coquelet, C., Jarne, C., Northrop, S., Richon, D.: Acid gases partial pressures above a 50 wt% aqueous methyldiethanolamine solution: Experimental work and modeling. Fluid Phase Equilib. 289(2), 99–109 (2010)

    Article  CAS  Google Scholar 

  3. Jalili, A.H., Shokouhi, M., Samani, F., Hosseini-Jenab, M.: Measuring the solubility of CO2 and H2S in sulfolane and the density and viscosity of saturated liquid binary mixtures of (sulfolane + CO2) and (sulfolane+ H2S). J. Che. Thermodyn. 85, 13–25 (2015)

    Article  CAS  Google Scholar 

  4. Jou, F.-Y., Deshmukh, R., Otto, F., Mather, A.: Solubility of H2S, CO2, CH4 and C2H6 in sulfolane at elevated pressures. Fluid Phase Equilib. 56, 313–324 (1990)

    Article  CAS  Google Scholar 

  5. Poormohammadian, S., Lashanizadegan, A., Salooki, M.K.: Modelling VLE data of CO2 and H2S in aqueous solutions of N-methyldiethanolamine based on non-random mixing rules. Int. J. Greenhouse Gas Control 42, 87–97 (2015)

    Article  CAS  Google Scholar 

  6. Roberts, B., Mather, A.: Solubility of H2S and CO2 in sulfolane. Can. J. Chem. Eng. 66(3), 519–520 (1988)

    Article  CAS  Google Scholar 

  7. Zong, L., Chen, C.-C.: Thermodynamic modeling of CO2 and H2S solubilities in aqueous DIPA solution, aqueous sulfolane–DIPA solution, and aqueous sulfolane–MDEA solution with electrolyte NRTL model. Fluid Phase Equilib. 306(2), 190–203 (2011)

    Article  CAS  Google Scholar 

  8. Salooki, M.K., Shokouhi, M., Farahani, H., Keshavarz, M., Esfandyari, M., Ahari, J.S.: Experimental and modelling investigation of H2S solubility in N-methylimidazole and gamma-butyrolactone. J. Chem. Thermodyn. 135, 133–142 (2019)

    Article  Google Scholar 

  9. Shokouhi, M., Salooki, M.K., Ahari, J.S., Esfandyari, M.: Thermodynamical and artificial intelligence approaches of H2S solubility in N-methylpyrrolidone. Chem. Phys. Lett. 707, 22–30 (2018)

    Article  CAS  Google Scholar 

  10. Nagasaka, K., Ichihashi, H., Leonard, R.: Neuro-fuzzy GMDH and its application to modelling grinding characteristics. Int. J. Production Res. 33(5), 1229–1240 (1995)

    Article  Google Scholar 

  11. Saghatoleslami, N., Salooki, M., Mohamadi, N.: Auto-design of neural network–based gas for manipulating the Khangiran gas refinery sweetening absorption column outputs. Petrol. Sci. Techn. 29(14), 1437–1448 (2011)

    Article  CAS  Google Scholar 

  12. Takassi, M.A., Salooki, M.K., Esfandyari, M.: Fuzzy model prediction of Co(III) Al2O3 catalytic behavior in Fischer–Tropsch synthesis. J. Natural Gas Chem. 20(6), 603–610 (2011)

    Article  CAS  Google Scholar 

  13. Hayduk, W., Pahlevanzadeh, H.: The solubility of sulfur dioxide and hydrogen sulfide in associating solvents. Can. J. Chem. Eng. 65(2), 299–307 (1987)

    Article  CAS  Google Scholar 

  14. Rumpf, B., Maurer, G.: An experimental and theoretical investigation on the solubility of carbon dioxide in aqueous solutions of strong electrolytes. Ber. Bunsenges. Phys. Chem. 97(1), 85–97 (1993)

    Article  CAS  Google Scholar 

  15. Shokouhi, M., Farahani, H., Hosseini-Jenab, M., Jalili, A.H.: Solubility of hydrogen sulfide in N-methylacetamide and N,N-dimethylacetamide: experimental measurement and modeling. J. Chem. Eng. Data 60(3), 499–508 (2015)

    Article  CAS  Google Scholar 

  16. Shokouhi, M., Jalili, A.H., Zoghi, A.T.: Experimental investigation of hydrogen sulfide solubility in aqueous sulfolane solution. J. Chem. Thermodyn. 106, 232–242 (2017)

    Article  CAS  Google Scholar 

  17. Mueller, J.-A., Ivachnenko, A., Lemke, F.: GMDH algorithms for complex systems modelling. Math. Computer Model. Dyn. Systems 4(4), 275–316 (1998)

    Article  Google Scholar 

  18. Nariman-Zadeh, N., Darvizeh, A., Ahmad-Zadeh, G.: Hybrid genetic design of GMDH-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process. Proc. Instit. Mech. Eng.B: J. Eng. Manufacture 217(6), 779–790 (2003)

    Article  Google Scholar 

  19. Witczak, M., Korbicz, J., Mrugalski, M., Patton, R.J.: A GMDH neural network-based approach to robust fault diagnosis: application to the DAMADICS benchmark problem. Control Eng. Pract. 14(6), 671–683 (2006)

    Article  Google Scholar 

  20. Pazuki, G., Kakhki, S.S.: A hybrid GMDH neural network to investigate partition coefficients of Penicillin G Acylase in polymer–salt aqueous two-phase systems. J. Mol. Liq. 188, 131–135 (2013)

    Article  CAS  Google Scholar 

  21. Ghazanfari, N., Gholami, S., Emad, A., Shekarchi, M.: Evaluation of GMDH and MLP networks for prediction of compressive strength and workability of concrete. Bull. Soc. Roy. Sci. Liège 86, 855–868 (2017)

    CAS  Google Scholar 

  22. Amanifard, N., Nariman-Zadeh, N., Borji, M., Khalkhali, A., Habibdoust, A.: Modelling and Pareto optimization of heat transfer and flow coefficients in microchannels using GMDH type neural networks and genetic algorithms. Energy Conv. Manage. 49(2), 311–325 (2008)

    Article  CAS  Google Scholar 

  23. Parsaie, A., Haghiabi, A.H.: Improving modelling of discharge coefficient of triangular labyrinth lateral weirs using SVM GMDH and MARS techniques. Irrig. Drain. 66(4), 636–654 (2017)

    Article  Google Scholar 

  24. Brelvi, S., O’connell, J.: Correspondling states correlations for liquid compressibility and partial molal volumes of gases at infinite dilution in liquids. AIChE J. 18(6), 1239–1243 (1972)

    Article  CAS  Google Scholar 

  25. Gorelkin, O., Dubrovin, A., Kolesnikova, O., Chirkov, N.O.: Redlich and Kister. Ind. Eng. Chem 40, 345–348 (1948)

    Article  Google Scholar 

  26. Edwards, T., Maurer, G., Newman, J., Prausnitz, J.: Vapor–liquid equilibria in multicomponent aqueous solutions of volatile weak electrolytes. AIChE J. 24(6), 966–976 (1978)

    Article  CAS  Google Scholar 

  27. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J Phys. Chem. 77(2), 268–277 (1973). https://doi.org/10.1021/j100621a026

    Article  CAS  Google Scholar 

  28. Pérez-Salado Kamps, Á., Jödecke, M., Xia, J., Vogt, M., Maurer, G.: Influence of salts on the solubility of carbon dioxide in (water + methanol). Part 1: sodium chloride. Ind. Eng. Chem. Res. 45(4), 1505–1515 (2006)

    Article  Google Scholar 

  29. Valtz, A., Chapoy, A., Coquelet, C., Paricaud, P., Richon, D.: Vapour–liquid equilibria in the carbon dioxide–water system, measurement and modelling from 2782 to 3182 K. Fluid Phase Equil. 226, 333–344 (2004)

    Article  CAS  Google Scholar 

  30. Siqueira Campos, C.E.P., Villardi, H.G.D.A., Pessoa, F.L.P., Uller, A.M.C.: Solubility of carbon gioxide in water and hexadecane: experimental measurement and thermodynamic modeling. J. Chem. Eng. Data 54(10), 2881–2886 (2009). https://doi.org/10.1021/je800966f

    Article  CAS  Google Scholar 

  31. Soave, G.: Equilibrium constants from a modified Redlich–Kwong equation of state. Chem. Eng. Sci. 27(6), 1197–1203 (1972)

    Article  CAS  Google Scholar 

  32. NIST Scientific and Technical Databases, Thermophysical Properties of Fluid Systems. http://webbook.nist.gov/chemistry/fluid/. Accessed Sept 2017

  33. VonNiederhausern, D.M., Wilson, G.M., Giles, N.F.: Critical point and vapor pressure measurements for 17 compounds by a low residence time flow method. J. Chem. Eng. Data 51(6), 1990–1995 (2006). https://doi.org/10.1021/je060269j

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morteza Esfandyari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfandyari, M., Salooki, M.K., Shokouhi, M. et al. Thermodynamic and GMDH Modeling of CO2 and H2S Solubility in Aqueous Sulfolane Solution. J Solution Chem 50, 1–18 (2021). https://doi.org/10.1007/s10953-020-01034-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01034-7

Keywords

Navigation