Skip to main content
Log in

Investigation of the Effect of Alkyl Chain Length on Molecular Interactions Between Methyl Benzoate with Alcohols: A Study of Physicochemical Properties

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Densities, speeds of sound, and viscosities of binary mixtures of methyl benzoate (MB) with ethanol, 1-propanol, and 1-butanol were measured at temperature ranging from T = 293.2 to 313.2 K and refractive indices were determined at T = 303.2 K. Excess molar volumes, VE, isentropic compressibility deviations ∆κs and viscosity deviations, Δη, were obtained and fitted with the Redlich–Kister equation with satisfactory results. Based on the measured and derived physicochemical properties, the influence of the alkyl chain length of the alcohol on the molecular interactions of the studied mixtures was explored. The results show that both hydrogen bond interaction between carbonyl group of MB and hydroxyl group of alcohol and the packing efficiency, such as accommodation of alcohol in the interstice of MB, play an important role in the microstructure of the mixtures, which leads to the disruption of alcohol with the addition of MB. Moreover, by comparing VE, ∆κs and Δη values of MB (1) + alcohol (2) systems at T = 303.2 K, it is found that the strength of hydrogen bond interaction and the packing efficiency significantly weakens with increasing alkyl chain length of alcohol in going from ethanol to 1-butanol, resulting in the VE values of the studied systems gradually changing from a negative deviation to an S shape, the ∆κs and Δη values have negative deviations, and the ∆nD values have positive deviations. The obtained results will provide thermodynamic guidance for the industrial purification of methyl benzoate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Jyothirmai, G., Nayeem, S.M., Khan, I., Anjaneyulu, C.J.: Thermo-physicochemical investigation of molecular interactions in binary combination (dimethyl carbonate + methyl benzoate). Therm. Anal. Calorim. 132, 693–707 (2018)

    CAS  Google Scholar 

  2. Werkmeister, S., Junge, K., Wendt, B., Alberico, E., Jiao, H., Baumann, W., Junge, H., Gallou, F., Beller, M.: Hydrogenation of esters to alcohols with a well-defined iron complex. Angew. Chem. Int. Ed. 53, 8722–8726 (2014)

    CAS  Google Scholar 

  3. Jiang, Y., Bao, Q., Gui, W., Wu, Y., Liu, X., Zhang, L., Zheng, B., Wang, Z.: A highly effective Cu/ZnO/Al2O3 catalyst for hydrogenation of methyl benzoate to benzyl alcohol in methanol solution. Catal. Lett. 149, 1359–1367 (2019)

    CAS  Google Scholar 

  4. Li, Y., Liu, Q., Huang, W., Yang, J.: Solubilities of CO2 capture absorbents methyl benzoate, ethyl hexanoate and methyl heptanoate. J. Chem. Thermodyn. 127, 25–32 (2018)

    CAS  Google Scholar 

  5. Ardizzone, S., Bianchi, C.L., Ragaini, V., Vercelli, B.: SO4–ZrO2 catalysts for the esterification of benzoic acid to methylbenzoate. Catal. Lett. 62, 59–65 (1999)

    CAS  Google Scholar 

  6. Kamitanaka, T., Yamamoto, K., Matsuda, T., Harada, T.: Transformation of benzonitrile into benzyl alcohol and benzoate esters in supercritical alcohols. Tetrahedron 64, 5699–5702 (2008)

    CAS  Google Scholar 

  7. Heintz, A.: Recent developments in thermodynamics and thermophysics of non-aqueous mixtures containing ionic liquids. A review. J. Chem. Thermodyn. 37, 525–535 (2005)

    CAS  Google Scholar 

  8. Douhéret, G., Davis, M.I., Reis, J.C.R., Blandamer, M.J.: Isentropic compressibilities—experimental origin and the quest for their rigorous estimation in thermodynamically ideal liquid mixtures. Chem. Phys. Chem. 2, 148–161 (2001)

    PubMed  Google Scholar 

  9. Gmehling, J., Kolbe, B., Kleiber, M., Rarey, J.: Chemical Thermodynamics for Process Simulation. Wiley–VCH (2019)

  10. Sastry, S.S., Shaik, B., Vishwam, T., Ha, S.T.: Excess thermodynamic and acoustic properties for the binary mixtures of methyl benzoate at T = (303, 308, 313, 318 and 323) K. Phys. Chem. Liq. 52, 272–286 (2014)

    CAS  Google Scholar 

  11. Sinnokrot, M.O., Valeev, E.F., Sherrill, C.D.: Estimates of the ab initio limit for π-π interactions: the benzene dimer. J. Am. Chem. Soc. 124, 10887–10893 (2002)

    CAS  PubMed  Google Scholar 

  12. Navarro, A.M., García, B., Hoyuelos, F.J., Peñacoba, I.A., Leal, J.M.: preferential solvation in alkan-1-ol/alkylbenzoate binary mixtures by solvatochromic probes. J. Phys. Chem. B 115, 10259–10269 (2011)

    CAS  PubMed  Google Scholar 

  13. Umadevi, M., Kesavasamy, R., Rathina, K., Mahalakshmi, R.: Studies on liquid–liquid interactions of some ternary mixtures by density, viscosity and ultrasonic speed measurements. J. Mol. Liq. 219, 820–828 (2016)

    CAS  Google Scholar 

  14. Shihab, S.S., Rao, K.G., Kiran, M.G., Babu, S., Sastry, S.S.: Excess thermodynamic and acoustic properties for equimolar mixture of methyl benzoate and alkanols with benzene at 303.15 K. Rasayan. J. Chem. 10, 59–63 (2017)

    CAS  Google Scholar 

  15. Rao, M.V.P., Naidu, P.R.: Excess volumes of binary mixtures of alcohols in methylcyclohexane. Can. J. Chem. 52, 788–790 (1974)

    CAS  Google Scholar 

  16. Garcia, B., Ortega, J.C.: Excess viscosity ηE, excess volume VE, and excess free energy of activation ∆G*E at 283, 293, 303, 313, and 323 K for mixtures acetonitrile and alkyl benzoates. J. Chem. Eng. Data 33, 200–204 (1988)

    CAS  Google Scholar 

  17. Aminabhavi, T.M., Phayde, H.T., Khinnavar, R.S., Gopalakrishna, B., Hansen, K.C.: Densities, refractive indices, speeds of sound, and shear viscosities of diethylene glycol dimethyl ether with ethyl acetate, methyl benzoate, ethyl benzoate, and diethyl succinate in the temperature range from 298.15 to 318.15 K. J. Chem. Eng. Data 39, 251–260 (1994)

    CAS  Google Scholar 

  18. Rathnam, M.V., Sayed, R.T., Bhanushali, K.R., Kumar, M.S.S.: Molecular interaction study of binary mixtures of methyl benzoate: viscometric and ultrasonic study. J. Mol. Liq. 166, 9–16 (2012)

    CAS  Google Scholar 

  19. Muñoz, M.M., Tinjacá, D.A., Jouyban, A., Martínez, F., Acree, W.E.: Study of some volumetric and refractive properties of PEG 300 (1) + ethanol (2) mixtures at several temperatures. Phys. Chem. Liq. 56, 391–402 (2018)

    Google Scholar 

  20. Chen, J., Chen, L., Xu, Y.: Properties of pure 1,1,3,3-tetramethylguanidine imidazole ionic liquid and its binary mixtures with alcohols at T = (293.15 to 313.15) K. J. Chem. Thermodyn. 88, 110–120 (2015)

    CAS  Google Scholar 

  21. Dzida, M., Żak, A., Ernst, S.: Thermodynamic and acoustic properties of binary mixtures of alcohols and alkanes. I. Speed of sound in (ethanol + n-heptane) under elevated pressures. J. Chem. Thermodyn. 37, 405–414 (2005)

    CAS  Google Scholar 

  22. Li, J., Hu, Y., Sun, S., Liu, Y., Liu, Z.: Densities and dynamic viscosities of the binary system (water + 1-hexyl-3-methylimidazolium bromide) at different temperatures. J. Chem. Thermodyn. 42, 904–908 (2010)

    CAS  Google Scholar 

  23. Trenzado, J., Romano, E., Segade, L., Caro, M.N., González, E., Galván, S.: Densities and viscosities of four binary diethyl carbonate + 1-alcohol systems from (288.15 to 313.15) K. J. Chem. Eng. Data 56, 2841–2848 (2011)

    CAS  Google Scholar 

  24. Sadeghi, R., Azizpour, S.: Volumetric, compressibility, and viscometric measurements of binary mixtures of poly (vinylpyrrolidone) + water, + methanol, + ethanol, + acetonitrile, + 1-propanol, + 2-propanol, and + 1-butanol. J. Chem. Eng. Data 56, 240–250 (2011)

    CAS  Google Scholar 

  25. George, J., Sastry, N.V.: Densities, dynamic viscosities, speeds of sound, and relative permittivities for water + alkanediols (propane-1, 2-and-1, 3-diol and butane-1, 2-,-1, 3-,-1, 4-, and-2, 3-diol) at different temperatures. J. Chem. Eng. Data 48, 1529–1539 (2003)

    CAS  Google Scholar 

  26. Rodriguez, A., Canosa, J., Tojo, J.: Density, refractive index, and speed of sound of binary mixtures (diethyl carbonate + alcohols) at several temperatures. J. Chem. Eng. Data 46, 1506–1515 (2001)

    CAS  Google Scholar 

  27. Dubey, G.P., Sharma, M., Dubey, N.: Study of densities, viscosities, and speeds of sound of binary liquid mixtures of butan-1-ol with n-alkanes (C6, C8, and C10) at T = (298.15, 303.15, and 308.15) K. J. Chem. Thermodyn. 40, 309–320 (2008)

    CAS  Google Scholar 

  28. Nain, A.K.: Volumetric, acoustic and viscometric studies of solute-solute and solute-solvent interactions of isoniazid in aqueous-glucose/sucrose solutions at temperatures from 293.15 K to 318.15 K. J. Chem. Thermodyn. 133, 123–134 (2019)

    Google Scholar 

  29. Stokes, R.H., Mills, R.: Viscosity of Electrolytes and Related Properties. Pergamon Press, New York (1965)

    Google Scholar 

  30. Reddy, M.S., Raju, K.T.S., Rao, A.S., Sharmila, N., Babu, B.H.: Study of thermophysical properties of the binary mixtures of ionic liquid 1-ethyl-3-methylimidazolium ethylsulfate and 2-propoxyethanol from T = (298.15 To 328.15) K at atmospheric pressure. J. Chem. Thermodyn. 101, 139–149 (2016)

    CAS  Google Scholar 

  31. Wang, J., Tian, Y., Zhao, Y., Zhuo, K.: A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and n, n–dimethylformamide. Green Chem. 5, 618–622 (2003)

    CAS  Google Scholar 

  32. Mokhtarani, B., Sharifi, A., Mortaheb, H.R., Mirzaei, M., Mafi, M., Sadeghian, F.: Densities and viscosities of pure 1-methyl-3-octylimidazolium nitrate and its binary mixtures with alcohols at several temperatures. J. Chem. Eng. Data 55, 3901–3908 (2010)

    CAS  Google Scholar 

  33. Xu, Y., Yao, J., Wang, C., Li, H.: Density, viscosity, and refractive index properties for the binary mixtures of n-butylammonium acetate ionic liquid + alkanols at several temperatures. J. Chem. Eng. Data 57, 298–308 (2012)

    CAS  Google Scholar 

  34. Abria, A., Babajani, N., Zonouz, A.M., Shekaari, H.: Spectral and thermophysical properties of some novel deep eutectic solvent based on l-menthol and their mixtures with ethanol. J. Mol. Liq. 285, 477–487 (2019)

    Google Scholar 

  35. Grimme, S.: Do special noncovalent π–π stacking interactions really exist? Angew. Chem. Int. Ed. 47, 3430–3434 (2008)

    CAS  Google Scholar 

  36. Zhu, A., Wang, J., Liu, R.: A volumetric and viscosity study for the binary mixtures of 1-hexyl-3-methylimidazolium tetrafluoroborate with some molecular solvents. J. Chem. Thermodyn. 43, 796–799 (2011)

    CAS  Google Scholar 

  37. Feng, X., Chen, T., Yin, Y., Xu, Y.: A detail study of the microstructure of methyl benzoate/methanol mixture proved by IR spectra, excess infrared wavenumber, and physicochemical properties. J. Mol. Liq. 302, 112521 (2020)

    CAS  Google Scholar 

  38. Brooks, N.J., Castiglione, F., Doherty, C.M., Dolan, A., Hill, A.J., Hunt, P.A., Matthews, R.P., Mauri, M., Mele, A., Simonutti, R., Villar-Garcia, I.J., Weber, C.C., Welton, T.: Linking the structures, free volumes, and properties of ionic liquid mixtures. Chem. Sci. 8, 6359–6374 (2017)

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Pires, J., Timperman, L., Jacquemin, J., Balducci, A., Anouti, M.: Density, conductivity, viscosity, and excess properties of (pyrrolidinium nitrate-based protic ionic liquid + propylene carbonate) binary mixture. J. Chem. Thermodyn. 59, 10–19 (2013)

    CAS  Google Scholar 

  40. Anouti, M., Vigeant, A., Jacquemin, J., Brigouleix, C., Lemordant, D.: Volumetric properties, viscosity and refractive index of the protic ionic liquid, pyrrolidinium octanoate, in molecular solvents. J. Chem. Thermodyn. 42, 834–845 (2010)

    CAS  Google Scholar 

  41. Xu, Y., Chen, B., Qian, W., Li, H.: Properties of pure n-butylammonium nitrate ionic liquid and its binary mixtures of with alcohols at T = (293.15 to 313.15) K. J. Chem. Thermodyn. 58, 449–459 (2013)

    CAS  Google Scholar 

  42. Govinda, V., Venkatesu, P., Bahadur, I.: Molecular interactions between ammonium-based ionic liquids and molecular solvents: current progress and challenges. Phys. Chem. Chem. Phys. 18, 8278–8326 (2016)

    CAS  PubMed  Google Scholar 

  43. Aggarwal, N., Sharma, M., Banipal, T.S., Banipal, P.K.: Influence of phosphate-based salts on enthalpy of dilution and isentropic compressibility properties of saccharides and their derivatives in aqueous solutions. J. Chem. Eng. Data 64, 517–528 (2019)

    CAS  Google Scholar 

  44. Orge, B., Rodríguez, A., Canosa, J.M., Marino, G., Iglesias, M., Tojo, J.: Variation of densities, refractive indices, and speeds of sound with temperature of methanol or ethanol with hexane, heptane, and octane. J. Chem. Eng. Data 44, 1041–1047 (1999)

    CAS  Google Scholar 

  45. Umapathi, R., Naidoo, P., Ramjugernath, D., Venkatesu, P., Bahadur, I.: Investigation of temperature and composition dependence of molecular interactions between phosphonium-based ionic liquid + N, N-dimethylformamide: A study of thermophysical properties. J. Mol. Liq. 291, 110987 (2019)

    CAS  Google Scholar 

  46. Rana, V.A., Chaube, H., Gadani, D.H.: Dielectric permittivity, density, viscosity and refractive index of binary mixtures of anisole with methanol and 1-propanol at different temperatures. J. Mol. Liq. 164, 191–196 (2011)

    CAS  Google Scholar 

  47. Rana, V.A., Chaube, H.A.: Static permittivity, density, viscosity and refractive index of binary mixtures of anisole with 1-butanol and 1-heptanol at different temperatures. J. Mol. Liq. 173, 71–76 (2012)

    CAS  Google Scholar 

  48. Fort, J.R., Moore, W.R.: Viscosities of binary liquid mixtures. Trans. Faraday Soc. 62, 1112–1119 (1966)

    CAS  Google Scholar 

  49. Anouti, M., Jacquemin, J., Lemordant, D.: Volumetric properties, viscosities, and isobaric heat capacities of imidazolium octanoate protic ionic liquid in molecular solvents. J. Chem. Eng. Data 55, 5719–5728 (2010)

    CAS  Google Scholar 

  50. An, N., Zhuang, B., Li, M., Lu, Y., Wang, Z.G.: Combined theoretical and experimental study of refractive indices of water–acetonitrile–salt systems. J. Phys. Chem. B 119, 10701–10709 (2015)

    CAS  PubMed  Google Scholar 

  51. Deetlefs, M., Seddon, K.R., Shara, M.: neoteric optical media for refractive index determination of gems and minerals. New J. Chem. 30, 317–326 (2006)

    CAS  Google Scholar 

  52. Díaz-Rodríguez, P., Cancilla, J.C., Plechkova, N.V., Matute, G., Seddon, K.R., Torrecilla, J.S.: Estimation of the refractive indices of imidazolium-based ionic liquids using their polarisability values. Phys. Chem. Chem. Phys. 16, 128–134 (2014)

    PubMed  Google Scholar 

  53. Zhu, J., Xu, Y., Feng, X., Zhu, X.: A Detailed study of physicochemical properties and microstructure of EmimCl-EG deep eutectic solvents: Their influence on SO2 absorption behavior. J. Ind. Eng. Chem. 67, 148–155 (2018)

    CAS  Google Scholar 

  54. Ye, F., Zhu, J., Yu, K., Zhu, R., Xu, Y., Chen, J., Chen, L.: physicochemical properties of binary mixtures of 1,1,3,3-tetramethylguanidine imidazolide ionic liquid with water and alcohols. J. Chem. Thermodyn. 97, 39–47 (2016)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (No. 21978172), National Natural Science Foundation of Zhejiang Province (No. Y18B060014), National Undergraduate Training Program for Innovation and Entrepreneurship (No. 201810349013), Undergraduate Scientific and Technological Innovation Project of Shaoxing University, the Key Teacher Training Research of Shaoxing University (No. 2016227).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjie Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, T., Feng, X., Yin, Y. et al. Investigation of the Effect of Alkyl Chain Length on Molecular Interactions Between Methyl Benzoate with Alcohols: A Study of Physicochemical Properties. J Solution Chem 49, 1402–1418 (2020). https://doi.org/10.1007/s10953-020-01029-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01029-4

Keywords

Navigation