Skip to main content
Log in

Volumetric Properties of Aqueous NaCl−MgCl2−H2O and KCl−MgCl2−H2O Solutions and Their Correlation with the Pitzer Model

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The densities of aqueous solutions NaCl–MgCl2–H2O and KCl–MgCl2–H2O have been measured by vibrating-tube densimetry at 5 K intervals over the temperature range of 288 ≤ T/K ≤ 323 at atmospheric pressure. An experimental study was carried out for four total ionic strengths, for which the ionic strength fraction of MgCl2 was 0.2, 0.4, 0.6 and 0.8. The ion interaction approach developed by Pitzer was used to correlate the volumetric properties of aqueous mixtures. The mixing parameters of the Pitzer model were obtained by the least squares method. The calculated results are in good agreement with the experimental and literature data. The volume of mixing at constant ionic strength and at 298.15 K was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wang, S.J.: Calculation and application of density of saline brine. J. Salt Lake Res. 8, 44–49 (2000)

    Google Scholar 

  2. Young, T.F., Smith, M.B.: Thermodynamic properties of mixtures of electrolytes in aqueous solutions. J. Phys. Chem. 58, 716–724 (1954)

    Article  CAS  Google Scholar 

  3. Patwardhan, V.S., Kumar, A.: A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. 1. Vapor-pressure and heat of vaporization. AIChE J. 32, 1419–1428 (1986)

    Article  CAS  Google Scholar 

  4. Patwardhan, V.S., Kumar, A.: A unified approach for prediction of thermodynamic properties of aqueous mixed-electrolyte solutions. 2. Volume, thermal, and other properties. AIChE J. 32, 1429–1438 (1986)

    Article  CAS  Google Scholar 

  5. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  6. Pitzer, K.S.: Ion interaction approach: theory and data correlation. In: Pitzer, K.S. (ed.) Activity Coefficients in Electrolyte Solutions, Chap.3, 2nd edn. CRC Press, Boca Raton (1991)

    Google Scholar 

  7. Kumar, A.: Prediction of densities of concentrated brines by Pitzer theory. J. Chem. Eng. Data 31, 19–20 (1986)

    Article  CAS  Google Scholar 

  8. Monnin, C.: An ion interaction-model for the volumetric properties of natural waters: density of the solution and partial molal volumes of electrolytes to high concentrations at 25 °C. Geochim. Cosmochim. Acta 53, 1177–1188 (1989)

    Article  CAS  Google Scholar 

  9. Krumgalz, B.S.: Application of the Pitzer ion interaction model to natural hypersaline brines. J. Mol. Liq. 91, 1–3 (2001)

    Article  Google Scholar 

  10. Mao, S.D., Peng, Q.B., Wang, M., Hu, J.W., Peng, C.R., Zhang, J.: The PVTx properties of aqueous electrolyte solutions containing Li+, Na+, K+, Mg2+, Ca2+, Cl and SO 2−4 under conditions of CO2 capture and sequestration. Appl. Geochem. 86, 105–120 (2017)

    Article  CAS  Google Scholar 

  11. Millero, F.J., Connaughton, L.M., Vinokurova, F., Chetirkin, P.V.: PVT Properties of concentrated aqueous electrolytes. III. Volume changes for mixing the major sea salts at I = 1.0 and 3.0 at 25 °C. J. Solution Chem. 14, 837–851 (1985)

    Article  CAS  Google Scholar 

  12. Millero, F.J., Lampreia, M.I.: PVT properties of concentrated aqueous electrolytes. IV Changes in the compressibilities of mixing the major sea salts at 25 °C. J. Solution Chem. 14, 853–864 (1985)

    Article  CAS  Google Scholar 

  13. Connaughton, L.M., Millero, F.J.: The PVT properties of concentrated aqueous electrolytes. VIII. The volume changes for mixing the major sea salts at an ionic strength of 3.0 from 5 to 95 °C. J. Solution Chem. 16, 491–502 (1987)

    Article  CAS  Google Scholar 

  14. Qiblawey, H.A., Abu-Jdayil, B.: Viscosity and density of the ternary solution of magnesium chloride + sodium chloride + water from (298.15 to 318.15) K. J. Chem. Eng. Data 55, 3322–3326 (2010)

    Article  CAS  Google Scholar 

  15. Rowland, D., May, P.M.: A comparative investigation of mixing rules for property prediction in multicomponent electrolyte solutions. J. Solution Chem. 47, 107–126 (2018)

    Article  CAS  Google Scholar 

  16. Iulian, O., Sirbu, F., Stoicescu, C.: Density and apparent molar volume prediction in some ternary electrolyte solutions. Rev. Roumanie Chim. 53, 1125–1129 (2008)

    CAS  Google Scholar 

  17. Saluja, P.P.S., Jobe, D.J., Leblanc, J.C., Lemire, R.J.: Apparent molar heat capacities and volumes of mixed electrolytes: [NaCl(aq) + CaCl2(aq)], [NaCl(aq) + MgCl2(aq)], and [CaCl2(aq) + MgCl2(aq)]. J. Chem. Eng. Data 40, 398–406 (1995)

    Article  CAS  Google Scholar 

  18. Zezin, D., Driesner, T., Scott, S., Sanchez-Valle, C., Wagner, T.: Volumetric properties of mixed electrolyte aqueous solutions at elevated temperatures and pressures the systems CaCl2–NaCl–H2O and MgCl2–NaCl–H2O to 523.15 K, 70 MPa, and ionic strength from (0.1 to 18) mol kg−1. J. Chem. Eng. Data 59, 2570–2588 (2014)

    Article  CAS  Google Scholar 

  19. Kumar, A.: Mixture densities and volumes of aqueous KCl−MgCl2 up to ionic strength of 4.5 mol kg−1 and at 298.15 K. J. Chem. Eng. Data 34, 87–89 (1989)

    Article  Google Scholar 

  20. Yu, X.D., Zeng, Y., Yao, H.X., Yang, J.Y.: Metastable phase equilibria in the aqueous ternary systems KCl + MgCl2 + H2O and KCl + RbCl + H2O at 298.15 K. J. Chem. Eng. Data 56, 3384–3391 (2011)

    Article  CAS  Google Scholar 

  21. Yu, X.D., Zeng, Y.: Metastable phase equilibria in the aqueous ternary systems KCl + MgCl2 + H2O and KCl + RbCl + H2O at 323.15 K. J. Chem. Eng. Data 55, 5771–5776 (2010)

    Article  CAS  Google Scholar 

  22. Hu, B., Hnědkovský, L., Hefter, G., Li, W.: Densities and molar volumes of aqueous solutions of LiClO4 at temperatures from 293 to 343 K. J. Chem. Eng. Data 61, 1388–1394 (2016)

    Article  CAS  Google Scholar 

  23. Archer, D.G.: Thermodynamic properties of NaCl + H2O system. II Thermodynamic properties of NaCl(aq), NaCl·2H2O(cr), and phase equilibria. J. Phys. Chem. Ref. Data 21, 793–829 (1992)

    Article  CAS  Google Scholar 

  24. Krumgalz, B., Pogorelskii, R., Sokolov, A.: Volumetric ion interaction parameters for single-solute aqueous electrolyte solutions at various temperatures. J. Phys. Chem. Ref. Data 29, 1123–1140 (2000)

    Article  CAS  Google Scholar 

  25. Connaughton, L.M., Millero, F.J., Pitzer, K.S.: Volume changes for mixing the major sea salts: equation valid to ionic strength 30 and temperature 95 °C. J. Solution Chem. 18, 1007–1017 (1989)

    Article  CAS  Google Scholar 

  26. Wagner, W., Pruss, A.: The IAPWS formulation 1995 for the thermodynamic properties of ordinary water substance for general and scientific use. J. Phys. Chem. Ref. Data 31, 387–535 (2002)

    Article  CAS  Google Scholar 

  27. Desnoyers, J.E., Arel, M., Perron, G., Jolicoeur, C.: Apparent molal volumes of alkali halides in water at 25 °C influence of structural hydration interactions on concentration dependence. J. Phys. Chem. 73, 3346–3351 (1969)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from the National Key R&D Program of China (2017YFC0602801), the Natural Science Foundation of Qinghai Province (2017−ZJ−704) and the International Partnership Program of the Chinese Academy of Sciences (122363KYSB20190033) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Hu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, X., Hu, B., Li, W. et al. Volumetric Properties of Aqueous NaCl−MgCl2−H2O and KCl−MgCl2−H2O Solutions and Their Correlation with the Pitzer Model. J Solution Chem 49, 1339–1348 (2020). https://doi.org/10.1007/s10953-020-01004-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01004-z

Keywords

Navigation