Skip to main content
Log in

Polymerization and Transformation of Tungsten(VI) Species in Acidic Aqueous Solution by Electrospray Ionization Time-of-Flight Mass Spectrometry

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Deep understanding of the polymerization and transformation of tungstate species in aqueous solution is of great significance for hydrometallurgical and chemical separation processes, such as solvent extraction, membrane separation and crystallization. In order to study the polymerization and transformation of tungstate species, the semi-quantitative characterization method of electrospray ionization time-of-flight mass spectrometry (ESI-TOF-MS) was developed. In this paper, the tungsten speciation in simulative leaching solution was investigated in detail between pH 2.5 and 7 under various conditions (e.g. acid species, initial concentration, pH), and the results indicated that HCl was more conducive than HNO3 for the polymerization of tungsten at the same pH, and HAc accelerated the polymerization of tungsten species, especially in acid solution at lower pH; the morphological changes of each tungsten species tended to be consistent with the increase of tungsten concentration; pH strongly influenced the distribution of tungsten species. Then, the polymerization and transformation laws of tungstate species are summarized. W1 (monomers) are dominant species in weak acid and neutral solution, and aggregate into oligomeric species (e.g. W2, W4, W6). Transformations also exist among W2, W4 and W6. The polymerization process from W4 and W6 species to higher poly-tungstate (W10–12) was observed with the consumption of H+. This work aims to understand the polymerization and transformation of tungsten speciation using ESI-TOF-MS, which should provide useful information for the understanding and optimizing of industrial production and environmental processes, building a bridge between micro tungsten speciation and macro industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Senthilnathan, N., Annamalai, A.R., Venkatachalam, G.: Sintering of tungsten and tungsten heavy alloys of W–Ni–Fe and W–Ni–Cu: a review. Trans. Indian Inst. Met. 70(5), 1161–1176 (2017)

    Article  CAS  Google Scholar 

  2. Leal-Ayala, D.R., Allwood, J.M., Petavratzi, E., Brown, T.J., Gunn, G.: Mapping the global flow of tungsten to identify key material efficiency and supply security opportunities. Resour. Conserv. Recy. 103, 19–28 (2015)

    Article  Google Scholar 

  3. Zhang, X.Y., Ning, P.G., Cao, H.B., Zhang, Y.: Measurement and modeling for molybdenum extraction from the Na2MoO4–H2SO4–H2O system by primary amine N1923. Ind Eng. Chem. Res. 55(5), 1427–1438 (2016)

    Article  CAS  Google Scholar 

  4. Jiang, X.B., Tuo, L.H., Lu, D.P., Hou, B.H., Chen, W., He, G.H.: Progress in membrane distillation crystallization: Process models, crystallization control and innovative applications. Front. Chem. Sci. Eng. 11(4), 647–662 (2017)

    Article  Google Scholar 

  5. Sun, J., Bostick, B.C.: Effects of tungstate polymerization on tungsten(VI) adsorption on ferrihydrite. Chem. Geol. 417, 21–31 (2015)

    Article  CAS  Google Scholar 

  6. Davantès, A., Costa, D., Sallman, B., Rakshit, S., Lefèvre, G.: Surface polymerization of Mo(VI) and W(VI) anions on hematite revealed by in situ infrared spectroscopy and DFT+U theoretical study. J. Phys. Chem. C. 121(1), 324–332 (2016)

    Article  Google Scholar 

  7. Zhang, C., Howell, R.C., Scotland, K.B., Perez, F.G., Todaro, L., Francesconi, L.C.: Aqueous speciation studies of europium(III) phosphotungstate. Inorg. Chem. 43, 7691–7701 (2016)

    Article  Google Scholar 

  8. Hastings, J.J., Howarth, O.W.: A 183W, 1H and 17O nuclear magnetic resonance study of aqueous isopolytungstates. J. Chem. Soc. Dalton. 2, 209–215 (2016)

    Google Scholar 

  9. Aureliano, M., Ohlin, C.A., Vieira, M.O., Marques, M.P.M., Casey, W.H., de Carvalho, L.A.E.B.: Characterization of decavanadate and decaniobate solutions by raman spectroscopy. Dalton. Trans. 45(17), 7391–7399 (2016)

    Article  CAS  PubMed  Google Scholar 

  10. Redkin, A.F., Bondarenko, G.V.: Raman spectra of tungsten-bearing solutions. J. Solution Chem. 39(10), 1549–1561 (2010)

    Article  CAS  Google Scholar 

  11. Hsu, K.C., Sun, C.C., Ling, Y.C., Jiang, S.J., Huang, Y.L.: An on-line microfluidic device coupled with inductively coupled plasma mass spectrometry for chromium speciation. J. Anal. At. Spectrom. 28(8), 1320–1326 (2013)

    Article  CAS  Google Scholar 

  12. Ščančar, J., Berlinger, B., Thomassen, Y., Milačič, R.: Simultaneous speciation analysis of chromate, molybdate, tungstate and vanadate in welding fume alkaline extracts by HPLC-ICP-MS. Talanta 142, 164–169 (2015)

    Article  PubMed  Google Scholar 

  13. Long, D.L., Streb, C., Song, Y.F., Mitchell, S., Cronin, L.: Unravelling the complexities of polyoxometalates in solution using mass spectrometry: Protonation versus heteroatom inclusion. J. Am. Chem. Soc. 130, 1830–1832 (2008)

    Article  CAS  PubMed  Google Scholar 

  14. Jia, Q.D., Cao, J., Duan, Y.P., Hu, C.W.: The solution chemistry and reactivity of lacunary keggin silicotungstates monitored in real-time by a combination of mass spectrometry and electrochemistry. Dalton. Trans. 44(2), 553–559 (2015)

    Article  CAS  PubMed  Google Scholar 

  15. Zhao, H., Liu, H.J., Qu, J.H.: Aluminum speciation of coagulants with low concentration: Analysis by electrospray ionization mass spectrometry. Colloid. Surface. A 379(1–3), 43–50 (2011)

    Article  CAS  Google Scholar 

  16. Kovalchik, K.A., MacLennan, M.S., Peru, K.M., Headley, J.V., Chen, D.D.Y.: Standard method design considerations for semi-quantification of total naphthenic acids in oil sands process affected water by mass spectrometry: a review. Front. Chem. Sci. Eng. 11(3), 497–507 (2017)

    Article  CAS  Google Scholar 

  17. Bonchio, M., Bortolini, O., Conte, V., Sartorel, A.: Electrospray behavior of lacunary keggin-type polyoxotungstates [XW11O39]p (X = Si, P): Mass spectrometric evidence for a concentration-dependent incorporation of an MOn+ (M = WVI, MoVI, VV) unit into the polyoxometalate vacancy. Eur. J. Inorg. Chem. 4, 699–704 (2003)

    Article  Google Scholar 

  18. Truebenbach, C.S., Houalla, M., Hercules, D.M.: Characterization of isopoly metal oxyanions using electrospray time-of-flight mass spectrometry. J. Mass. Spectrom. 35, 1121–1127 (2000)

    Article  CAS  PubMed  Google Scholar 

  19. Bednar, A.J., Mirecki, J.E., Inouye, L.S., Winfield, L.E., Larson, S.L., Ringelberg, D.B.: The determination of tungsten, molybdenum, and phosphorus oxyanions by high performance liquid chromatography inductively coupled plasma mass spectrometery. Talanta 72(5), 1828–1832 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. Jia, Q., Zhang, Y., Cao, J.: Characterization of polyoxometalates by electrospray ionization mass spectrometry. Sci. China. Chem. 58(7), 1206–1210 (2015)

    Article  CAS  Google Scholar 

  21. Walanda, D.K., Burns, R.C., Lawrance, G.A., Nagy-Felsobuki, E.I.: Electrospray mass spectrometry of aqueous solutions. J. Clust. Sci. 11, 5–28 (2000)

    Article  CAS  Google Scholar 

  22. Truong, H.T., Nguyen, T.H., Lee, M.S.: Separation of molybdenum(VI), rhenium(VII), tungsten(VI), and vanadium(V) by solvent extraction. Hydrometallurgy 171, 298–305 (2017)

    Article  CAS  Google Scholar 

  23. Johnson, G.E., Al Hasan, N.M., Laskin, J.: Influence of heteroanion and ammonium cation size on the composition and gas-phase fragmentation of polyoxovanadates. Int. J. Mass. Spectrom. 354, 333–341 (2013)

    Article  Google Scholar 

  24. Deery, M.J., Howarth, O.W., Jennings, K.R.: Application of electrospray ionisation mass spectrometry to the study of dilute aqueous oligomeric anions and their reactions. J. Chem. Soc. Dalton. 24, 4783–4788 (1997)

    Article  Google Scholar 

  25. Zhao, H., Hu, C.Z., Liu, H.J., Zhao, X., Qu, J.H.: Role of aluminum speciation in the removal of disinfection byproduct precursors by a coagulation process. Environ. Sci. Technol. 42, 5752–5758 (2008)

    Article  CAS  PubMed  Google Scholar 

  26. Wen, J.W., Ning, P.G., Cao, H.B., Sun, Z., Zhang, Y., Xu, G.J.: Recovery of high-purity vanadium from aqueous solutions by reusable primary amines N1923 associated with semiquantitative understanding of vanadium species. ACS Sustainable. Chem. Eng. 6(6), 7619–7626 (2018)

    Article  CAS  Google Scholar 

  27. Smith, B.J., Patrick, V.A.: Quantitative determination of sodium metatungstate speciation by 183W N.M.R. spectroscopy. Aust. J. Chem. 53, 965–970 (2000)

    Article  CAS  Google Scholar 

  28. Himeno, S., Kitazumi, I.: Capillary electrophoretic study on the formation and transformation of isopolyoxotungstates in aqueous and aqueous-CH3CN media. Inorg. Chim. Acta. 355, 81–86 (2003)

    Article  CAS  Google Scholar 

  29. Fedotov, M.A., Maksimovskaya, R.I.: NMR structural aspects of the chemistry of V, Mo W polyoxometalates. J. Struct. Chem. 47(5), 952–978 (2006)

    Article  CAS  Google Scholar 

  30. Sanna, D., Ugone, V., Micera, G., Buglyó, P., Bíró, L., Garribba, E.: Speciation in human blood of metvan, a vanadium based potential anti-tumor drug. Dalton. Trans. 46(28), 8950–8967 (2017)

    Article  CAS  PubMed  Google Scholar 

  31. Koutsospyros, A., Braida, W., Christodoulatos, C., Dermatas, D., Strigul, N.: A review of tungsten: from environmental obscurity to scrutiny. J. Hazard. Mater. 136(1), 1–19 (2006)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Fund for Distinguished Young Scholars of China (No. 51425405) and the Youth Innovation Promotion Association, CAS (No. 2016042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pengge Ning.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17146 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Ning, P., Wen, J. et al. Polymerization and Transformation of Tungsten(VI) Species in Acidic Aqueous Solution by Electrospray Ionization Time-of-Flight Mass Spectrometry. J Solution Chem 49, 1107–1124 (2020). https://doi.org/10.1007/s10953-020-01001-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-01001-2

Keywords

Navigation