Skip to main content
Log in

On the Complexation of Gold(I) with Glutathione in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Some processes of interaction between \({\text{AuCl}}_{2}^{ - }\) and glutathione with the formation of polymeric \(\left( {-{\text{AuGSH}}_{i}-} \right)_{n}^{n(i - 2) + }\) and monomeric \({\text{Au}} ({\text{GS}})_2{\text{H}}_{i}^{i - 5}\) gold(I) complexes in aqueous solutions at ionic strength of I = 0.2 mol·L−1 (NaCl) have been studied at 25 °C. The precipitate formed in the acidic region corresponds to the ordinary polymer \(\left( {-{\text{AuGSH}}_{2}-} \right)_{n}\). The dependence of its solubility upon pH has been investigated. The substitution equilibria, \({\text{Au}}({\text{GS}})_{2}^{5 - } + {\text{S}}_{2} {\text{O}}_{3}^{2 - } \rightleftharpoons {\text{Au}}({\text{GS}}){\text{S}}_{2} {\text{O}}_{3}^{4 - } + {\text{GS}}^{3 - }\), log10 β1 =  − 4.5 ± 0.3, and \({\text{Au}}({\text{GS}})_{2}^{5 - } + 2{\text{S}}_{2} {\text{O}}_{3}^{2 - } \rightleftharpoons {\text{Au}}({\text{S}}_{2} {\text{O}}_{3} )_{2}^{3 - } + 2{\text{GS}}^{3 - }\), log10 β2 =  − 8.5 ± 0.2, have been studied and the effective protonation constants of the complexes have been determined. It is shown that under the action of \({\text{AuCl}}_{4}^{ - }\) GSH is oxidized to sulfinic and sulfonic acids. The potential of using highly stable gold(I) complexes with glutathione as ligands, for metal ions having an affinity with respect to the amine nitrogen atom, has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Shaw III, C.F.: Gold-based therapeutic agents. Chem. Rev. 99, 2589–2600 (1999)

    Article  CAS  Google Scholar 

  2. Brown, D.H., Smith, W.E.: The chemistry of the gold drugs used in the treatment of rheumatoid arthritis. J. Chem. Soc. Dalton Trans. 9, 217–240 (1980)

    CAS  Google Scholar 

  3. Negishi, Y., Nobusada, K., Tsukuda, T.: Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)–thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005)

    Article  CAS  Google Scholar 

  4. Negishi, Y., Takasugi, Y., Sato, S., Yao, H., Kimura, K., Tsukuda, T.: Magic-numbered Aun clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J. Am. Chem. Soc. 126, 6518–6519 (2004)

    Article  CAS  Google Scholar 

  5. Pensa, E., Cortes, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M.H., Benitez, G., Rubert, A.A., Salvarezza, R.C.: The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012)

    Article  CAS  Google Scholar 

  6. Corthey, G., Giovanetti, L.J., Ramallo-Lopez, J.M., Zelaya, E., Rubert, A.A., Benitez, G.A., Requejo, F.G., Fonticelli, M.H., Salvarezza, R.C.: Synthesis and characterization of gold@gold(I)–thiomalate core@shell nanoparticles. ACS Nano 4, 3413–3421 (2010)

    Article  CAS  Google Scholar 

  7. Majzik, A., Fülöp, L., Csapó, E., Bogár, F., Martinek, T., Penke, B., Bíró, G., Dékány, I.: Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment. Colloids Surf. B 81, 235–241 (2010)

    Article  CAS  Google Scholar 

  8. Krolikowska, A., Bukowska, J.: Self-assembled monolayers of mercaptosuccinic acid monolayers on silver and gold surfaces designed for protein binding: Part II: Vibrational spectroscopy studies on cytochrome c immobilization. J. Raman Spectrosc. 38, 943–949 (2007)

    Article  CAS  Google Scholar 

  9. Raymond, P., Brinas, R.P., Minghui, H., Qian, L., Lymar, E.S., Hainfeld, J.F.: Gold Nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 130, 975–982 (2008)

    Article  Google Scholar 

  10. Luo, Z., Yuan, X., Yu, Y., Zhang, Q., Leong, D.T., Lee, J.Y., Xie, J.: From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 134, 16662–16670 (2012)

    Article  CAS  Google Scholar 

  11. Zhang, X., Wu, F.-G., Liu, P., Gu, N., Chen, Z.: Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: Glutathione detection and selective cancer cell imaging. Small 10, 5170–5177 (2014)

    CAS  PubMed  Google Scholar 

  12. Ao, H., Feng, H., Li, K., Zhao, M., Qian, Z., Chen, J.: Coordinate bonding-induced emission of gold–glutathione complex for sensitive detection of aluminum species. Sens. Actuators B-Chem. 272, 1–7 (2018)

    Article  CAS  Google Scholar 

  13. Mironov, I.V., Kharlamova, VYu: Additional aspects of complexation of gold(I) with thiomalate. J. Solution Chem. 47, 511–527 (2018)

    Article  CAS  Google Scholar 

  14. Gammons, C.H., Yunmei, Y., Wiliams-Jones, A.E.: The disproportionation of gold(I) chloride complexes at 25 to 200 °C. Geochim. Cosmochim. Acta 61, 1971–1983 (1997)

    Article  CAS  Google Scholar 

  15. Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions. Reinhold, New York (1950)

    Google Scholar 

  16. Isab, A.A., Sadler, P.J.: Hydrogen-1 and carbon-13 nuclear magnetic resonance studies of gold(I) thiomalate ('myocrisin') in aqueous solution: dependence of the solution structure on pH and ionic strength. Dalton Trans. 7, 1657–1663 (1981)

    Article  Google Scholar 

  17. Howard-Lock, H.E., LeBlanc, D.J., Lock, C.J.L., Smith, R.W., Wang, Z.: Concerning the nature of the gold-containing anti-arthritic drug, myochrysine. Chem. Commun. 11, 1391–1392 (1996)

    Article  Google Scholar 

  18. Isab, A.A., Ahmad, S.: Applications of NMR spectroscopy in understanding the gold biochemistry. Spectroscopy 20, 109–123 (2006)

    Article  CAS  Google Scholar 

  19. Howard-Lock, H.E.: Structures of gold(I) and silver(I) thiolate complexes of medicinal interest: a review and recent results. Met. Based Drugs 6, 201–209 (1999)

    Article  CAS  Google Scholar 

  20. Darabi, F., Marzo, T., Massai, L., Scaletti, F., Michelucci, E., Messori, L.: Reactions of model proteins with aurothiomalate, a clinically established gold(I) drug: the comparison with auranofin. J. Inorg. Biochem. 149, 102–107 (2015)

    Article  CAS  Google Scholar 

  21. Lewis, G., Shaw III, C.F.: Competition of thiols and cyanide for gold(I). Inorg. Chem. 25, 58–62 (1986)

    Article  CAS  Google Scholar 

  22. Albert, A., Brauckmann, C., Blaske, F., Sperling, M., Engelhard, C., Karst, U.: Speciation analysis of the antirheumatic agent Auranofin and its thiol adducts by LC/ESI-MS and LC/ICP-MS. J. Anal. At. Spectrom. 27, 975–981 (2012)

    Article  CAS  Google Scholar 

  23. Berglund, J., Elding, L.I.: Kinetics and mechanism for reduction of tetrachloroaurate(III), trans-dicyanodichloraurate(III), and trans-dicyanodibromoaurate(III) by sulfite and hydrogen sulfite. Inorg. Chem. 34, 513–519 (1995)

    Article  CAS  Google Scholar 

  24. Oram, P.D., Fang, X., Fernando, Q., Letkeman, P., Letkeman, D.: The formation constants of mercury(II)–glutathione complexes. Chem. Res. Toxicol. 9, 709–712 (1996)

    Article  CAS  Google Scholar 

  25. Vasilev, K., Zhu, T., Glasser, G.: Preparation of gold nanoparticles in an aqueous medium using 2-mercaptosuccinic acid as both reduction and capping agent. J. Nanosci. Nanotechnol. 8, 2062–2068 (2008)

    Article  CAS  Google Scholar 

  26. Shaw III, C.F., Cancro, M.P., Witkiewicz, P.L., Eldridge, J.E.: Gold(III) oxidation of disulfides in aqueous solution. Inorg. Chem. 19, 3198–3201 (1980)

    Article  CAS  Google Scholar 

  27. Hu, Y., Feng, J.M., Li, Y.W., Sun, Y.Y., Xu, L., Zhao, Y.M., Gao, Q.Y.: Kinetic study on hydrolysis and oxidation of formamidine disulfide in acidic solutions. Sci. China Chem. 55, 235–241 (2012)

    Article  CAS  Google Scholar 

  28. Rio, L.G., Munkley, C.G., Stedman, G.: Kinetic study of the stability of (NH2)2CSSC(NH2)22+. J. Chem. Soc. Perkin Trans. 2, 159–162 (1996)

    Article  Google Scholar 

  29. Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solutions. IUPAC, Marcel Dekker Inc, New York (1985)

    Google Scholar 

  30. Belevantsev, V.I., Peshchevitskii, B.I., Tsvelodub, L.D.: Thermodynamic characteristics of some gold cyano-complexes in aqueous solutions. Russ. J. Inorg. Chem. 32, 108–112 (1987)

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Viktoria Yu. Kharlamova.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, I.V., Kharlamova, V.Y. On the Complexation of Gold(I) with Glutathione in Aqueous Solutions. J Solution Chem 49, 583–597 (2020). https://doi.org/10.1007/s10953-020-00994-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00994-0

Keywords

Navigation