Abstract
Some processes of interaction between \({\text{AuCl}}_{2}^{ - }\) and glutathione with the formation of polymeric \(\left( {-{\text{AuGSH}}_{i}-} \right)_{n}^{n(i - 2) + }\) and monomeric \({\text{Au}} ({\text{GS}})_2{\text{H}}_{i}^{i - 5}\) gold(I) complexes in aqueous solutions at ionic strength of I = 0.2 mol·L−1 (NaCl) have been studied at 25 °C. The precipitate formed in the acidic region corresponds to the ordinary polymer \(\left( {-{\text{AuGSH}}_{2}-} \right)_{n}\). The dependence of its solubility upon pH has been investigated. The substitution equilibria, \({\text{Au}}({\text{GS}})_{2}^{5 - } + {\text{S}}_{2} {\text{O}}_{3}^{2 - } \rightleftharpoons {\text{Au}}({\text{GS}}){\text{S}}_{2} {\text{O}}_{3}^{4 - } + {\text{GS}}^{3 - }\), log10 β1 = − 4.5 ± 0.3, and \({\text{Au}}({\text{GS}})_{2}^{5 - } + 2{\text{S}}_{2} {\text{O}}_{3}^{2 - } \rightleftharpoons {\text{Au}}({\text{S}}_{2} {\text{O}}_{3} )_{2}^{3 - } + 2{\text{GS}}^{3 - }\), log10 β2 = − 8.5 ± 0.2, have been studied and the effective protonation constants of the complexes have been determined. It is shown that under the action of \({\text{AuCl}}_{4}^{ - }\) GSH is oxidized to sulfinic and sulfonic acids. The potential of using highly stable gold(I) complexes with glutathione as ligands, for metal ions having an affinity with respect to the amine nitrogen atom, has been established.
Similar content being viewed by others
References
Shaw III, C.F.: Gold-based therapeutic agents. Chem. Rev. 99, 2589–2600 (1999)
Brown, D.H., Smith, W.E.: The chemistry of the gold drugs used in the treatment of rheumatoid arthritis. J. Chem. Soc. Dalton Trans. 9, 217–240 (1980)
Negishi, Y., Nobusada, K., Tsukuda, T.: Glutathione-protected gold clusters revisited: Bridging the gap between gold(I)–thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127, 5261–5270 (2005)
Negishi, Y., Takasugi, Y., Sato, S., Yao, H., Kimura, K., Tsukuda, T.: Magic-numbered Aun clusters protected by glutathione monolayers (n = 18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J. Am. Chem. Soc. 126, 6518–6519 (2004)
Pensa, E., Cortes, E., Corthey, G., Carro, P., Vericat, C., Fonticelli, M.H., Benitez, G., Rubert, A.A., Salvarezza, R.C.: The chemistry of the sulfur-gold interface: in search of a unified model. Acc. Chem. Res. 45, 1183–1192 (2012)
Corthey, G., Giovanetti, L.J., Ramallo-Lopez, J.M., Zelaya, E., Rubert, A.A., Benitez, G.A., Requejo, F.G., Fonticelli, M.H., Salvarezza, R.C.: Synthesis and characterization of gold@gold(I)–thiomalate core@shell nanoparticles. ACS Nano 4, 3413–3421 (2010)
Majzik, A., Fülöp, L., Csapó, E., Bogár, F., Martinek, T., Penke, B., Bíró, G., Dékány, I.: Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment. Colloids Surf. B 81, 235–241 (2010)
Krolikowska, A., Bukowska, J.: Self-assembled monolayers of mercaptosuccinic acid monolayers on silver and gold surfaces designed for protein binding: Part II: Vibrational spectroscopy studies on cytochrome c immobilization. J. Raman Spectrosc. 38, 943–949 (2007)
Raymond, P., Brinas, R.P., Minghui, H., Qian, L., Lymar, E.S., Hainfeld, J.F.: Gold Nanoparticle size controlled by polymeric Au(I) thiolate precursor size. J. Am. Chem. Soc. 130, 975–982 (2008)
Luo, Z., Yuan, X., Yu, Y., Zhang, Q., Leong, D.T., Lee, J.Y., Xie, J.: From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 134, 16662–16670 (2012)
Zhang, X., Wu, F.-G., Liu, P., Gu, N., Chen, Z.: Enhanced fluorescence of gold nanoclusters composed of HAuCl4 and histidine by glutathione: Glutathione detection and selective cancer cell imaging. Small 10, 5170–5177 (2014)
Ao, H., Feng, H., Li, K., Zhao, M., Qian, Z., Chen, J.: Coordinate bonding-induced emission of gold–glutathione complex for sensitive detection of aluminum species. Sens. Actuators B-Chem. 272, 1–7 (2018)
Mironov, I.V., Kharlamova, VYu: Additional aspects of complexation of gold(I) with thiomalate. J. Solution Chem. 47, 511–527 (2018)
Gammons, C.H., Yunmei, Y., Wiliams-Jones, A.E.: The disproportionation of gold(I) chloride complexes at 25 to 200 °C. Geochim. Cosmochim. Acta 61, 1971–1983 (1997)
Harned, H.S., Owen, B.B.: The Physical Chemistry of Electrolytic Solutions. Reinhold, New York (1950)
Isab, A.A., Sadler, P.J.: Hydrogen-1 and carbon-13 nuclear magnetic resonance studies of gold(I) thiomalate ('myocrisin') in aqueous solution: dependence of the solution structure on pH and ionic strength. Dalton Trans. 7, 1657–1663 (1981)
Howard-Lock, H.E., LeBlanc, D.J., Lock, C.J.L., Smith, R.W., Wang, Z.: Concerning the nature of the gold-containing anti-arthritic drug, myochrysine. Chem. Commun. 11, 1391–1392 (1996)
Isab, A.A., Ahmad, S.: Applications of NMR spectroscopy in understanding the gold biochemistry. Spectroscopy 20, 109–123 (2006)
Howard-Lock, H.E.: Structures of gold(I) and silver(I) thiolate complexes of medicinal interest: a review and recent results. Met. Based Drugs 6, 201–209 (1999)
Darabi, F., Marzo, T., Massai, L., Scaletti, F., Michelucci, E., Messori, L.: Reactions of model proteins with aurothiomalate, a clinically established gold(I) drug: the comparison with auranofin. J. Inorg. Biochem. 149, 102–107 (2015)
Lewis, G., Shaw III, C.F.: Competition of thiols and cyanide for gold(I). Inorg. Chem. 25, 58–62 (1986)
Albert, A., Brauckmann, C., Blaske, F., Sperling, M., Engelhard, C., Karst, U.: Speciation analysis of the antirheumatic agent Auranofin and its thiol adducts by LC/ESI-MS and LC/ICP-MS. J. Anal. At. Spectrom. 27, 975–981 (2012)
Berglund, J., Elding, L.I.: Kinetics and mechanism for reduction of tetrachloroaurate(III), trans-dicyanodichloraurate(III), and trans-dicyanodibromoaurate(III) by sulfite and hydrogen sulfite. Inorg. Chem. 34, 513–519 (1995)
Oram, P.D., Fang, X., Fernando, Q., Letkeman, P., Letkeman, D.: The formation constants of mercury(II)–glutathione complexes. Chem. Res. Toxicol. 9, 709–712 (1996)
Vasilev, K., Zhu, T., Glasser, G.: Preparation of gold nanoparticles in an aqueous medium using 2-mercaptosuccinic acid as both reduction and capping agent. J. Nanosci. Nanotechnol. 8, 2062–2068 (2008)
Shaw III, C.F., Cancro, M.P., Witkiewicz, P.L., Eldridge, J.E.: Gold(III) oxidation of disulfides in aqueous solution. Inorg. Chem. 19, 3198–3201 (1980)
Hu, Y., Feng, J.M., Li, Y.W., Sun, Y.Y., Xu, L., Zhao, Y.M., Gao, Q.Y.: Kinetic study on hydrolysis and oxidation of formamidine disulfide in acidic solutions. Sci. China Chem. 55, 235–241 (2012)
Rio, L.G., Munkley, C.G., Stedman, G.: Kinetic study of the stability of (NH2)2CSSC(NH2)22+. J. Chem. Soc. Perkin Trans. 2, 159–162 (1996)
Bard, A.J., Parsons, R., Jordan, J.: Standard Potentials in Aqueous Solutions. IUPAC, Marcel Dekker Inc, New York (1985)
Belevantsev, V.I., Peshchevitskii, B.I., Tsvelodub, L.D.: Thermodynamic characteristics of some gold cyano-complexes in aqueous solutions. Russ. J. Inorg. Chem. 32, 108–112 (1987)
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Mironov, I.V., Kharlamova, V.Y. On the Complexation of Gold(I) with Glutathione in Aqueous Solutions. J Solution Chem 49, 583–597 (2020). https://doi.org/10.1007/s10953-020-00994-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-020-00994-0