Abstract
Thermodynamically consistent equations for the accurate description of the dependence on concentration of the properties of electrolyte solutions are proposed, based on a polynomial of order i/4 and a unique set of adjustable coefficients. The equation for the logarithm of the solvent activity ln a1(m) was derived first, followed by analogous expressions for the osmotic coefficient ϕ(m), the solvent activity a1(m) and activity coefficient γ1(m) and finally for the mean ionic activity coefficient \(\gamma_{ \pm }^{o} (m)\). The descriptive capability of these equations was verified and favorably compares with the extended Pitzer equation. Finally, it was demonstrated that the evaluation of \(\ln \gamma_{ \pm }^{o} (m)\) is strongly influenced by the fitting capability of the expression used in the correlation of ϕ(m) in the low molality region.
Similar content being viewed by others
References
Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover Publishing, New York (2002)
Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. I and II. CRC Press, Boca Raton (1979)
Rard, J.A.: The isopiestic method: 100 years later and still in use. J. Solution Chem. 48, 271–282 (2019)
El Guendouzi, M., Marouani, M.: Water activities and osmotic and activity coefficients of aqueous solutions of nitrates at 25 °C by the hygrometric method. J. Solution Chem. 32, 271–282 (2019)
Lietzke, M.H., Stoughton, R.W.: The calculation of activity coefficients from osmotic coefficient data. J. Phys. Chem. 66, 508–509 (1962)
Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)
Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni–univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)
Staples, B.R., Nuttall, R.L.: The activity and osmotic coefficients of aqueous calcium chloride at 298.15 K. J. Phys. Chem. Ref. Data 6, 385–407 (1977)
Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 337–347 (1977)
Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. Lanthanum nitrate, praseodymium nitrate, and neodymium nitrate. J. Chem. Eng. Data 24, 346–354 (1979)
Miladinović, J., Ninković, R., Todorović, M., Jovanović, V.: Correlation of osmotic coefficient data for ZnSO4(aq) at 25 °C by various thermodynamic models. J. Solution Chem. 32, 371–383 (2003)
Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)
Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)
Wang, Z.C., He, M., Wang, J., Li, J.L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)
Chatterjee, S., Campbell, E.L., Neiner, D., Pence, N.K., Robinson, T.A., Levitskaia, T.G.: Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: extended Pitzer and Bromley treatments. J. Chem. Eng. Data 60, 2974–2988 (2015)
Guignot, S., Lassin, A., Christov, C., Lach, A., André, L., Henocq, P.: Modeling the osmotic and activity coefficients of lanthanide nitrate aqueous solutions at 298.15 K from low molalities to supersaturation. J. Chem. Eng. Data 64, 345–359 (2019)
He, M., Rard, J.A.: Revision of the osmotic coefficients, water activities and mean activity coefficients of the aqueous trivalent rare earth chlorides at T = 298.15 K. J. Solution Chem. 44, 2208–2221 (2015)
Yang, H., Zeng, D., Voigt, W., Hefter, G., Liu, S., Chen, Q.: Isopiestic measurements on aqueous solutions of heavy metal sulfates: MSO4 + H2O (M = Mn Co, Ni, Cu, Zn). 1. T = 323.15 K. J. Chem. Eng. Data 59, 97–102 (2014)
Dinane, A.: Thermodynamic properties of NaCl–NH4Cl–LiCl–H2O at 298.15 K. Water activity, osmotic and activity coefficients. Fluid Phase Equil. 273, 59–67 (2008)
Dinane, A., Moinir, A.: Hygrometric determination of water activities, and osmotic and activity coefficients of NH4Cl–CaCl2–H2O at T = 298.15 K. J. Chem. Thermodyn. 37, 259–265 (2005)
Moeyaert, P., Abiad, L., Sorel, C., Dufrêche, J.-F., Moisy, P.: Density and activity of perrhenic acid aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 85, 61–67 (2015)
Cohen, M.D., Flagan, R.C., Seinfeld, J.H.: Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 91, 4563–4574 (1987)
Yang, H., Zeng, D., Wang, Q., Chen, Y., Voigt, W.: Isopiestic measurements of water activity for the Li2SO4–MgSO4–H2O system at 323.15 and 373.15 K. J. Chem. Eng. Data 61, 3157–3162 (2016)
Gampe, T., Libuś, Z.: Osmotic and activity coefficients of CH3SO4Na(aq) and CH3SO4K(aq) at 25 °C. J. Solution Chem. 28, 837–847 (1999)
Zhang, J., Li, D., Yao, Y., Sun, B., Zeng, D., Song, P.: Thermodynamic properties of LiCl + MgSO4 + H2O at temperatures from 273.15 K to 373.15 K and representation with Pitzer ion-interaction model. J. Chem. Eng. Data 61, 2277–2291 (2016)
Han, H., Li, D., Guo, L., Yao, Y., Yang, H., Zeng, D.: Isopiestic measurements of water activity for the NaCl–KCl–MgCl2–H2O systems at 323.15 K. J. Chem. Eng. Data 60, 1139–1145 (2015)
Han, H., Guo, L., Li, D., Dong, O., Yao, Y., Zhang, N., Zeng, D.: Water activity measurements by the isopiestic method for the MCl–CaCl2–H2O (M = Na, K) systems at 323.15 K. J. Chem. Eng. Data 60, 2285–2290 (2015)
Guo, L., Tu, L., Wang, Y., Li, J.: Water activity and solubility measurements and model simulation of the CsCl–MgCl2–H2O ternary system at 323.15 K. J. Chem. Eng. Data 63, 483–487 (2018)
Gennero de Chialvo, M.R., Chialvo, A.C.: Prediction of the water activity in multicomponent solutions by a simple and accurate equation and derivation of the Zdanovskii’s rule. J. Solution Chem. 48, 395–411 (2019)
Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous cesium chloride, strontium chloride, and mixtures of sodium chloride and cesium chloride at 25 °C. J. Chem. Eng. Data 27, 169–173 (1982)
Momicchioli, F., Devoto, O., Grandi, G., Cocco, G.: Propieta termodinamiche di soluzioni concentrate di elettroliti forti. Coefficienti di attivita dell acqua da misure di abbassamenti crioscopici par i cloruri alcalini. Atti Soc. Nat. Mat. Modena 99, 227–231 (1968)
Rard, J.A.: Osmotic and activity coefficients of aqueous lanthanum(III) nitrate and densities and apparent molal volumes of aqueous europium(III) nitrate at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)
Hall, R.E., Harkins, W.D.: The free energy of dilution and the freezing-point lowering in solutions of some salts of various types of ionization, and of salt mixtures. J. Am. Chem. Soc. 38, 2658–2676 (1916)
Prigogine, I., Defay, R.: Chemical Thermodynamics, vol. I. Longmans Green and Co., London (1954)
Funding
This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017-1340), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311) and Universidad Nacional del Litoral (UNL, CAI + D 2016 PIC 018LI).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
The explicit form of Eq. 8 is,
Comparing Eq. A1 with Eq. 8, Eq. 9 is obtained,
In the same way, the explicit form of Eq. 18 is,
Comparing Eq. A2 with Eq. 18, Eq. 19 is obtained,
The relationship between Ai and Bi is obtained from the successive differentiation of ln a1(m). The first derivative is,
Taking the limit for z → 0 and bearing in mind that \(\mathop {\lim }\limits_{z \to 0} a_{1} = 1\),
Differentiating Eq. A3,
Taking the limit for z → 0 and considering Eqs. 9 and 19,
Repeating the differentiating process (until the tenth derivative), as well as the application of the limiting condition, taking into account Eqs. 11–13, as well as Eqs. 20–23, and applying the relationships \(A_{j}^{\text{o}}\) = Ai−4 and \(B_{j}^{\text{o}}\) = Bi−4, Eqs. 25–33 are finally obtained.
Rights and permissions
About this article
Cite this article
Passamonti, F.J., de Chialvo, M.R.G. & Chialvo, A.C. Thermodynamically Consistent Equations for the Accurate Description of the Logarithm of the Solvent Activity and Related Properties of Electrolyte Solutions with a Unique Set of Parameters: Critical Analysis of the Mean Activity Coefficient Evaluation. J Solution Chem 49, 695–714 (2020). https://doi.org/10.1007/s10953-020-00984-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-020-00984-2