Skip to main content
Log in

Thermodynamically Consistent Equations for the Accurate Description of the Logarithm of the Solvent Activity and Related Properties of Electrolyte Solutions with a Unique Set of Parameters: Critical Analysis of the Mean Activity Coefficient Evaluation

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Thermodynamically consistent equations for the accurate description of the dependence on concentration of the properties of electrolyte solutions are proposed, based on a polynomial of order i/4 and a unique set of adjustable coefficients. The equation for the logarithm of the solvent activity ln a1(m) was derived first, followed by analogous expressions for the osmotic coefficient ϕ(m), the solvent activity a1(m) and activity coefficient γ1(m) and finally for the mean ionic activity coefficient \(\gamma_{ \pm }^{o} (m)\). The descriptive capability of these equations was verified and favorably compares with the extended Pitzer equation. Finally, it was demonstrated that the evaluation of \(\ln \gamma_{ \pm }^{o} (m)\) is strongly influenced by the fitting capability of the expression used in the correlation of ϕ(m) in the low molality region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Robinson, R.A., Stokes, R.H.: Electrolyte Solutions, 2nd edn. Dover Publishing, New York (2002)

    Google Scholar 

  2. Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. I and II. CRC Press, Boca Raton (1979)

    Google Scholar 

  3. Rard, J.A.: The isopiestic method: 100 years later and still in use. J. Solution Chem. 48, 271–282 (2019)

    Article  CAS  Google Scholar 

  4. El Guendouzi, M., Marouani, M.: Water activities and osmotic and activity coefficients of aqueous solutions of nitrates at 25 °C by the hygrometric method. J. Solution Chem. 32, 271–282 (2019)

    Google Scholar 

  5. Lietzke, M.H., Stoughton, R.W.: The calculation of activity coefficients from osmotic coefficient data. J. Phys. Chem. 66, 508–509 (1962)

    Article  CAS  Google Scholar 

  6. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    Article  CAS  Google Scholar 

  7. Hamer, W.J., Wu, Y.C.: Osmotic coefficients and mean activity coefficients of uni–univalent electrolytes in water at 25 °C. J. Phys. Chem. Ref. Data 1, 1047–1100 (1972)

    Article  CAS  Google Scholar 

  8. Staples, B.R., Nuttall, R.L.: The activity and osmotic coefficients of aqueous calcium chloride at 298.15 K. J. Phys. Chem. Ref. Data 6, 385–407 (1977)

    Article  CAS  Google Scholar 

  9. Rard, J.A., Shiers, L.E., Heiser, D.J., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 3. The rare earth nitrates. J. Chem. Eng. Data 22, 337–347 (1977)

    Article  CAS  Google Scholar 

  10. Rard, J.A., Miller, D.G., Spedding, F.H.: Isopiestic determination of the activity coefficients of some aqueous rare earth electrolyte solutions at 25 °C. 4. Lanthanum nitrate, praseodymium nitrate, and neodymium nitrate. J. Chem. Eng. Data 24, 346–354 (1979)

    Article  Google Scholar 

  11. Miladinović, J., Ninković, R., Todorović, M., Jovanović, V.: Correlation of osmotic coefficient data for ZnSO4(aq) at 25 °C by various thermodynamic models. J. Solution Chem. 32, 371–383 (2003)

    Article  Google Scholar 

  12. Pitzer, K.S., Mayorga, G.: Thermodynamics of electrolytes. III. Activity and osmotic coefficients for 2–2 electrolytes. J. Solution Chem. 3, 539–546 (1974)

    Article  CAS  Google Scholar 

  13. Ananthaswamy, J., Atkinson, G.: Thermodynamics of concentrated electrolyte mixtures. 5. A review of the thermodynamic properties of aqueous calcium chloride in the temperature range 273.15–373.15 K. J. Chem. Eng. Data 30, 120–128 (1985)

    Article  CAS  Google Scholar 

  14. Wang, Z.C., He, M., Wang, J., Li, J.L.: Modeling of aqueous 3–1 rare earth electrolytes and their mixtures to very high concentrations. J. Solution Chem. 35, 1137–1156 (2006)

    Article  CAS  Google Scholar 

  15. Chatterjee, S., Campbell, E.L., Neiner, D., Pence, N.K., Robinson, T.A., Levitskaia, T.G.: Aqueous binary lanthanide(III) nitrate Ln(NO3)3 electrolytes revisited: extended Pitzer and Bromley treatments. J. Chem. Eng. Data 60, 2974–2988 (2015)

    Article  CAS  Google Scholar 

  16. Guignot, S., Lassin, A., Christov, C., Lach, A., André, L., Henocq, P.: Modeling the osmotic and activity coefficients of lanthanide nitrate aqueous solutions at 298.15 K from low molalities to supersaturation. J. Chem. Eng. Data 64, 345–359 (2019)

    Article  CAS  Google Scholar 

  17. He, M., Rard, J.A.: Revision of the osmotic coefficients, water activities and mean activity coefficients of the aqueous trivalent rare earth chlorides at T = 298.15 K. J. Solution Chem. 44, 2208–2221 (2015)

    Article  CAS  Google Scholar 

  18. Yang, H., Zeng, D., Voigt, W., Hefter, G., Liu, S., Chen, Q.: Isopiestic measurements on aqueous solutions of heavy metal sulfates: MSO4 + H2O (M = Mn Co, Ni, Cu, Zn). 1. T = 323.15 K. J. Chem. Eng. Data 59, 97–102 (2014)

    Article  CAS  Google Scholar 

  19. Dinane, A.: Thermodynamic properties of NaCl–NH4Cl–LiCl–H2O at 298.15 K. Water activity, osmotic and activity coefficients. Fluid Phase Equil. 273, 59–67 (2008)

    Article  CAS  Google Scholar 

  20. Dinane, A., Moinir, A.: Hygrometric determination of water activities, and osmotic and activity coefficients of NH4Cl–CaCl2–H2O at T = 298.15 K. J. Chem. Thermodyn. 37, 259–265 (2005)

    Article  CAS  Google Scholar 

  21. Moeyaert, P., Abiad, L., Sorel, C., Dufrêche, J.-F., Moisy, P.: Density and activity of perrhenic acid aqueous solutions at T = 298.15 K. J. Chem. Thermodyn. 85, 61–67 (2015)

    Article  CAS  Google Scholar 

  22. Cohen, M.D., Flagan, R.C., Seinfeld, J.H.: Studies of concentrated electrolyte solutions using the electrodynamic balance. 1. Water activities for single-electrolyte solutions. J. Phys. Chem. 91, 4563–4574 (1987)

    Article  CAS  Google Scholar 

  23. Yang, H., Zeng, D., Wang, Q., Chen, Y., Voigt, W.: Isopiestic measurements of water activity for the Li2SO4–MgSO4–H2O system at 323.15 and 373.15 K. J. Chem. Eng. Data 61, 3157–3162 (2016)

    Article  CAS  Google Scholar 

  24. Gampe, T., Libuś, Z.: Osmotic and activity coefficients of CH3SO4Na(aq) and CH3SO4K(aq) at 25 °C. J. Solution Chem. 28, 837–847 (1999)

    Article  CAS  Google Scholar 

  25. Zhang, J., Li, D., Yao, Y., Sun, B., Zeng, D., Song, P.: Thermodynamic properties of LiCl + MgSO4 + H2O at temperatures from 273.15 K to 373.15 K and representation with Pitzer ion-interaction model. J. Chem. Eng. Data 61, 2277–2291 (2016)

    Article  CAS  Google Scholar 

  26. Han, H., Li, D., Guo, L., Yao, Y., Yang, H., Zeng, D.: Isopiestic measurements of water activity for the NaCl–KCl–MgCl2–H2O systems at 323.15 K. J. Chem. Eng. Data 60, 1139–1145 (2015)

    Article  CAS  Google Scholar 

  27. Han, H., Guo, L., Li, D., Dong, O., Yao, Y., Zhang, N., Zeng, D.: Water activity measurements by the isopiestic method for the MCl–CaCl2–H2O (M = Na, K) systems at 323.15 K. J. Chem. Eng. Data 60, 2285–2290 (2015)

    Article  CAS  Google Scholar 

  28. Guo, L., Tu, L., Wang, Y., Li, J.: Water activity and solubility measurements and model simulation of the CsCl–MgCl2–H2O ternary system at 323.15 K. J. Chem. Eng. Data 63, 483–487 (2018)

    Article  CAS  Google Scholar 

  29. Gennero de Chialvo, M.R., Chialvo, A.C.: Prediction of the water activity in multicomponent solutions by a simple and accurate equation and derivation of the Zdanovskii’s rule. J. Solution Chem. 48, 395–411 (2019)

    Article  CAS  Google Scholar 

  30. Rard, J.A., Miller, D.G.: Isopiestic determination of the osmotic and activity coefficients of aqueous cesium chloride, strontium chloride, and mixtures of sodium chloride and cesium chloride at 25 °C. J. Chem. Eng. Data 27, 169–173 (1982)

    Article  CAS  Google Scholar 

  31. Momicchioli, F., Devoto, O., Grandi, G., Cocco, G.: Propieta termodinamiche di soluzioni concentrate di elettroliti forti. Coefficienti di attivita dell acqua da misure di abbassamenti crioscopici par i cloruri alcalini. Atti Soc. Nat. Mat. Modena 99, 227–231 (1968)

  32. Rard, J.A.: Osmotic and activity coefficients of aqueous lanthanum(III) nitrate and densities and apparent molal volumes of aqueous europium(III) nitrate at 25 °C. J. Chem. Eng. Data 32, 92–98 (1987)

    Article  CAS  Google Scholar 

  33. Hall, R.E., Harkins, W.D.: The free energy of dilution and the freezing-point lowering in solutions of some salts of various types of ionization, and of salt mixtures. J. Am. Chem. Soc. 38, 2658–2676 (1916)

    Article  CAS  Google Scholar 

  34. Prigogine, I., Defay, R.: Chemical Thermodynamics, vol. I. Longmans Green and Co., London (1954)

    Google Scholar 

Download references

Funding

This work was supported by Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT, PICT 2017-1340), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET, PIP 0311) and Universidad Nacional del Litoral (UNL, CAI + D 2016 PIC 018LI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abel C. Chialvo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The explicit form of Eq. 8 is,

$$\ln a_{1} = \left( {\ln a_{1} } \right)_{z = 0} + \left( {\frac{{\partial \ln a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z}}} \right)_{z = 0} z + \frac{1}{2!}\left( {\frac{{\partial^{2} \ln a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }}} \right)_{z = 0} z^{2} + \cdots + \frac{1}{n!}\left( {\frac{{\partial^{n} \ln a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{n} }}} \right)_{z = 0} z^{n}$$
(A1)

Comparing Eq. A1 with Eq. 8, Eq. 9 is obtained,

$$A_{i} = \frac{1}{i!}\left( {\frac{{\partial^{i} \ln a_{1} }}{{\partial z^{i} }}} \right)_{z = 0}$$
(9)

In the same way, the explicit form of Eq. 18 is,

$$a_{1} = \left( {a_{1} } \right)_{z = 0} + \left( {\frac{{\partial a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z}}} \right)_{z = 0} z + \frac{1}{2!}\left( {\frac{{\partial^{2} a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }}} \right)_{z = 0} z^{2} + \cdots + \frac{1}{n!}\left( {\frac{{\partial^{n} a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{n} }}} \right)_{z = 0} z^{n}$$
(A2)

Comparing Eq. A2 with Eq. 18, Eq. 19 is obtained,

$$B_{i} = \frac{1}{i!}\left( {\frac{{\partial^{i} a_{1} }}{{\partial {\kern 1pt} z^{i} }}} \right)_{z = 0}$$
(19)

The relationship between Ai and Bi is obtained from the successive differentiation of ln a1(m). The first derivative is,

$$\frac{{\partial \ln a_{1} }}{\partial z} = \frac{1}{{a_{1} }}\frac{{\partial a_{1} }}{\partial z}$$
(A3)

Taking the limit for z → 0 and bearing in mind that \(\mathop {\lim }\limits_{z \to 0} a_{1} = 1\),

$$\mathop {\lim }\limits_{z \to 0} \frac{{\partial \ln a_{1} }}{\partial z} = A_{1} = \mathop {\lim }\limits_{z \to 0} \left[ {\frac{1}{{a_{1} }}\frac{{\partial a_{1} }}{\partial z}} \right] = B_{1}$$
(A4)

Differentiating Eq. A3,

$$\frac{{\partial^{2} \ln a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }} = \frac{{a_{1} \frac{{\partial^{2} a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }} - \left( {\frac{{\partial a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z}}} \right)^{2} }}{{a_{1}^{2} }}$$
(A5)

Taking the limit for z → 0 and considering Eqs. 9 and 19,

$$\mathop {\lim }\limits_{z = 0} \frac{{\partial^{2} \ln a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }} = 2A_{2} = \mathop {\lim }\limits_{z = 0} \left[ {\frac{{a_{1} \frac{{\partial^{2} a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z^{2} }} - \left( {\frac{{\partial a_{1} }}{{\partial {\kern 1pt} {\kern 1pt} z}}} \right)^{2} }}{{a_{1}^{2} }}} \right] = 2B_{2} - A_{1}^{2}$$
(A6)

Repeating the differentiating process (until the tenth derivative), as well as the application of the limiting condition, taking into account Eqs. 1113, as well as Eqs. 2023, and applying the relationships \(A_{j}^{\text{o}}\) = Ai−4 and \(B_{j}^{\text{o}}\) = Bi−4, Eqs. 2533 are finally obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passamonti, F.J., de Chialvo, M.R.G. & Chialvo, A.C. Thermodynamically Consistent Equations for the Accurate Description of the Logarithm of the Solvent Activity and Related Properties of Electrolyte Solutions with a Unique Set of Parameters: Critical Analysis of the Mean Activity Coefficient Evaluation. J Solution Chem 49, 695–714 (2020). https://doi.org/10.1007/s10953-020-00984-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00984-2

Keywords

Navigation