Skip to main content

Advertisement

Log in

Estimation of Vapor Pressures of Solvent + Salt Systems with Quadratic Solvation Relationships

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The paper studies quadratic solvation models (QSMs) applied to the numerical simulation of the vapor pressures of solvent systems with a salt effect. Two useful general quadratic solvation relationships are presented within an integration framework, incorporating cumulative physical indices for components and boundary constraints, in conjunction with the vapor pressures of monomolecular fluids calculated from Antoine, Senol, Frost-Kalkwarf and Xiang-Tan equations. Literature data for the vapor pressures of 18 diverse binary (solvent + salt) and ternary (solvent 1 + solvent 2 + salt 3) vapor–liquid equilibrium systems are subjected to the statistical analysis of QSMs via a logarithmic-ratio objective function and cumulative frequency distribution. Essentially, the examined QSMs with twelve (QSM12) and six (QSM6) adjustable coefficients are quite accurate in yielding overall design factors (Fod) lower than 1.015 and 1.08, respectively. The concentration-dependent model (CM) also simulates precisely the observed data with Fod = 1.013 as far as salt effects are concerned. QSM12 models have proven reasonably successful in predicting the vapor pressures of ternary systems with a mean deviation of 2.2%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

\(C_{{\text{s}}}\) :

Salt concentration (wt %)

\(cu\) :

Cumulative descriptor

\(\overline{e}\) :

Mean relative error, \( \bar{e}{\text{ = }}\left( {{{{\text{100}}} \mathord{\left/ {\vphantom {{{\text{100}}} {\text{N}}}} \right. \kern-\nulldelimiterspace} {\text{N}}}} \right)\sum\nolimits_{{i = 1}}^{N} {\left| {{{\left( {P_{{i{\text{,obs}}}} - P_{{i{\text{,mod}}}} } \right)} \mathord{\left/ {\vphantom {{\left( {P_{{i{\text{,obs}}}} - P_{{i{\text{,mod}}}} } \right)} {P_{{i{\text{,obs}}}} }}} \right. \kern-\nulldelimiterspace} {P_{{i{\text{,obs}}}} }}} \right|} \) (\(\%\))

\(F\) :

Concentration dependent factor

\(F_{{\text{m}}}\) :

Model normalization factor

\(F_{{{\text{od}}}}\) :

Overall design factor

\(F_{{\text{s}}}\) :

Safety factor

\(N\) :

Number of observations

\(n_{i}\) :

Stoichiometric number of the ion in the salt structure

\(P_{i}\) :

Partial pressure of a component in the solvent mixture (kPa)

\(P\) :

Vapor pressure of (solvent + salt) system (kPa)

\(P_{0}\) :

Vapor pressure of a pure solvent (kPa)

\(P_{{\text{c}}}\) :

Critical vapor pressure of a pure solvent (kPa)

\(P_{{\text{t}}}^{{\prime}}\) :

Total vapor pressure of a solvent mixture involving a salt (kPa)

\(r\) :

Crystal ionic radius of the ion (nm)

\(r^{{\prime}}\) :

The normalized reciprocal of the crystal ionic radius (nm−1)

\(R_{{\text{D}}}\); \(R_{{\text{D}}}^{{\prime}}\) :

Molar refractivity of the ion and its normalized value (cm3·mol−1)

\(S\) :

Standard deviation

\(T\) :

Temperature (\({\text{K}}\))

\(T_{{\text{c}}}\) :

Critical temperature of a pure solvent (K)

\(t\) :

Student’s t parameter

\(V\) :

Molar volume of the component (dm3·mol−1)

\(v\); \(v^{{\prime}}\) :

Volume occupied by the ion and its normalized value (nm3)

w solv :

Mass fraction of solvent

\(X\) :

Objective function of model reliability

\(\overline{X}\) :

Mean of objective function

\(x_{i}\) :

Mole fraction of the component in the liquid phase

\(x_{W}^{{\prime}}\) :

The argument of the Lambert W function

\(Y\) :

Independent variable of objective function

\(y_{i}\) :

Mole fraction of the component in the vapor phase

\(z\) :

The charge of the ion

α; α*:

Solvatochromic parameters

β; β*:

Solvatochromic parameters

δ; δ*:

Solvatochromic parameters

δH; δH*:

Hildebrand solubility parameter (MPa0.5)

ϕ; ϕ0 :

Fugacity coefficients of the component

γ :

Activity coefficient of the component

π; π*:

Solvatochromic parameters

σ :

Root mean square deviation, \( \sigma {\text{ = }}\left[ {{{\sum\nolimits_{{i = 1}}^{N} {\left( {Y_{{i,{\text{obs}}}} - Y_{{i,{\text{mod}}}} } \right)^{2} } } \mathord{\left/ {\vphantom {{\sum\nolimits_{{i = 1}}^{N} {\left( {Y_{{i,{\text{obs}}}} - Y_{{i,{\text{mod}}}} } \right)^{2} } } N}} \right. \kern-\nulldelimiterspace} N}} \right]^{{0.5}} \)

σ p :

Softness parameter of the ion

desn:

Design property

mod:

Modeled property

obs:

Observed property

s:

Salt

References

  1. Pereiro, A.B., Araújo, J.M.M., Esperança, J.M.S.S., Marrucho, I.M., Rebelo, L.P.N.: Ionic liquids in separations of azeotropic systems: a review. J. Chem. Thermodyn. 46, 2–28 (2012)

    Article  CAS  Google Scholar 

  2. Hwang, I.-C., Kwon, R.-H., Park, S.-J.: Azeotrope breaking for the system ethyl tert–butyl ether (ETBE) + ethanol at 313.15 K and excess properties at 298.15 K for mixtures of ETBE and ethanol with phosphonium–based ionic liquids. Fluid Phase Equilib. 344, 32–37 (2013)

    Article  CAS  Google Scholar 

  3. Li, X.-M., Shen, C., Li, C.-X.: Effect of alkanolammonium formates ionic liquids on vapour−liquid equilibria of binary systems containing water, methanol, and ethanol. J. Chem. Thermodyn. 53, 167–175 (2012)

    Article  CAS  Google Scholar 

  4. Furter, W.F.: Thermodynamic Behavior of Electrolytes in Mixed Solvents. Advances in Chemistry Series. American Chemical Society, Washington, DC (1976)

    Book  Google Scholar 

  5. Mock, B., Evans, L.B., Chen, C.C.: Thermodynamic representation of phase equilibria of mixed-solvent electrolyte systems. AIChE J. 22, 1655–1664 (1986)

    Article  Google Scholar 

  6. Uhrig, G., Ji, X., Maurer, G.: Vapor–liquid equilibrium in systems (water + organic solvent + salt) at low water concentrations but high ratios of salt to water: experimental results and modeling. Fluid Phase Equilib. 228–229, 5–14 (2005)

    Article  CAS  Google Scholar 

  7. Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts. J. Chem. Thermodyn. 38, 152–157 (2006)

    Article  CAS  Google Scholar 

  8. Kumar, A.: Effect on vapor–pressure equilibria: a review of correlations and predictive models. Sep. Sci. Technol. 28, 1799–1818 (1993)

    Article  CAS  Google Scholar 

  9. Patel, B.H., Paricaud, P., Galindo, A., Maitland, G.C.: Prediction of the salting-out effect of strong electrolytes on water + alkane solutions. Ind. Eng. Chem. Res. 42, 3809–3823 (2003)

    Article  CAS  Google Scholar 

  10. Wang, J.-F., Li, C.-X., Wang, Z.-H., Li, Z.-J., Jiang, Y.-B.: Vapor pressure measurement for water, methanol, ethanol, and their binary mixtures in the presence of an ionic liquid 1–ethyl–3–methylimidazolium dimethylphosphate. Fluid Phase Equilib. 255, 186–192 (2007)

    Article  CAS  Google Scholar 

  11. Sandler, S.I.: Models for Thermodynamic and Phase Equilibria Calculations (Chemical Industries). Marcel Dekker, New York (1993)

    Google Scholar 

  12. Sandler, S.I.: Chemical, Biochemical, and Engineering Thermodynamics. Wiley, New York (2006)

    Google Scholar 

  13. Prausnitz, J.M., Lictenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria, 3rd edn. Prentice-Hall Inc., New Jersey (1999)

    Google Scholar 

  14. Prausnitz, J.M., Anderson, T., Grens, E., Eckert, C., Hsieh, R., O'Connell, J.P.: Computer Calculations for Multicomponent Vapor–Liquid and Liquid–Liquid Equilibria. Prentice-Hall Inc., Englewood Cliffs (1980)

    Google Scholar 

  15. Kikic, I., Fermeglia, M., Rasmussen, P.: UNIFAC prediction of vapor–liquid equilibria in mixed solvent–salt systems. Chem. Eng. Sci. 46, 2775–2780 (1991)

    Article  CAS  Google Scholar 

  16. Macedo, E.A., Skovborg, P., Rasmussen, P.: Calculation of phase equilibria for solutions of strong electrolytes in solvent–water mixtures. Chem. Eng. Sci. 45, 875–882 (1990)

    Article  CAS  Google Scholar 

  17. Mohs, A., Gmehling, J.: A revised LIQUAC and LIFAC Model (LIQUAC*/LIFAC*) for the prediction of properties of electrolyte containing solutions. Fluid Phase Equilib. 337, 311–322 (2013)

    Article  CAS  Google Scholar 

  18. Gani, R., Muro-Suñé, N., Sales-Cruz, M., Leibovici, C., O’Connell, J.P.: Mathematical and numerical analysis of classes of property models. Fluid Phase Equilib. 250, 1–32 (2006)

    Article  CAS  Google Scholar 

  19. Mahdoui, N.B., Artal, M., Hichri, M., Lafuente, C.: Volumetric behavior and vapor–liquid equilibrium of dimethyl disulfide + n-alkanol binary mixtures. J. Solution Chem. 48, 1–14 (2019)

    Article  CAS  Google Scholar 

  20. Zhou, T., McBride, K., Zhang, X., Qi, Z., Sundmacher, K.: Integrated solvent and process design exemplified for a Diels–Alder reaction. AIChE J. 61, 147–158 (2015)

    Article  CAS  Google Scholar 

  21. Simoni, L.D., Brennecke, J.F., Stadtherr, M.A.: Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 1. Theory, phase stability analysis, and parameter estimation. Ind. Eng. Chem. Res. 48, 7246–7256 (2009)

    Article  CAS  Google Scholar 

  22. Simoni, L.D., Chapeaux, A., Brennecke, J.F., Stadtherr, M.A.: Asymmetric framework for predicting liquid-liquid equilibrium of ionic liquid-mixed-solvent systems. 2. Prediction of ternary systems. Ind. Eng. Chem. Res. 48, 7257–7265 (2009)

    Article  CAS  Google Scholar 

  23. Poling, B.E., Prausnitz, J.M., O’Conell, J.P.: The Properties of Gases and Liquids, 5th edn. McGraw-Hill, New York (2001)

    Google Scholar 

  24. Reid, R.C., Prausnitz, J.M., Poling, B.E.: The Properties of Gases and Liquids, 4th edn. McGraw-Hill, New York (1987)

    Google Scholar 

  25. Bejarano, A., Poveda, L.J., de la Fuente, J.C.: Supplementary vapor pressure data of the glycol ethers, 1-methoxy-2-propanol, and 2-methoxyethanol at a pressure range of (15 to 177) kPa. J. Chem. Thermodyn. 53, 114–118 (2012)

    Article  CAS  Google Scholar 

  26. Růžička, K., Majer, V.: Simple and controlled extrapolation of vapor pressures toward the triple point. AIChE J. 42, 1723–1740 (1996)

    Article  Google Scholar 

  27. Luis, A., Forero, G., Jorge, A., Velásquez, J.: Wagner liquid–vapour pressure equation constants from a simple methodology. J. Chem. Thermodyn. 43, 1235–1251 (2011)

    Article  CAS  Google Scholar 

  28. Huber, M.L., Laesecke, A., Friend, D.G.: Correlation for the vapor pressure of mercury. Ind. Eng. Chem. Res. 45, 7351–7361 (2006)

    Article  CAS  Google Scholar 

  29. Godavarthy, S.S., Robinson Jr., R.L., Gasem, K.A.M.: SVRC–QSPR model for predicting saturated vapor pressures of pure fluids. Fluid Phase Equilib. 246, 39–51 (2006)

    Article  CAS  Google Scholar 

  30. Nieto-Draghi, C., Fayet, G., Creton, B., Rozanska, X., Rotureau, P., de Hemptinne, J.C., Ungerer, P., Rousseau, B., Adamo, C.: A general guidebook for the theoretical prediction of physicochemical properties of chemicals for regulatory purposes. Chem. Rev. 115, 13093–13164 (2015)

    Article  CAS  PubMed  Google Scholar 

  31. Bilde, M., Barsanti, K., Booth, M., Cappa, C.D., Donahue, N.M., Emanuelsson, E.U., McFiggans, G., Krieger, U.K., Marcolli, C., Topping, D., Ziemann, P., Barley, M., Clegg, S., Dennis-Smither, B., Hallquist, M., Hallquist, Å.M., Khlystov, A., Kulmala, M., Mogensen, D., Percival, C.J., Pope, F., Reid, J.P., da Silva, M.A.V.R., Rosenoern, T., Salo, K., Soonsin, V.P., Yli-Juuti, T., Prisle, N.L., Pagels, J., Rarey, J., Zardini, A.A., Riipinen, I.: Saturation vapor pressures and transition enthalpies of low-volatility organic molecules of atmospheric relevance: from dicarboxylic acids to complex mixtures. Chem. Rev. 115, 4115–4156 (2015)

    Article  CAS  PubMed  Google Scholar 

  32. Katritzky, A.R., Kuanar, M., Slavov, S., Hall, C.D., Karelson, M., Kahn, I., Dobchev, D.A.: Quantitative correlation of physical and chemical properties with chemical structure. Utility for prediction. Chem. Rev. 110, 5714–5789 (2010)

    Article  CAS  PubMed  Google Scholar 

  33. Katritzky, A.R., Slavov, S.H., Dobchev, D.A., Karelson, M.: Rapid QSPR model development technique for prediction of vapor pressure of organic compounds. Comput. Chem. Eng. 31, 1123–1130 (2007)

    Article  CAS  Google Scholar 

  34. Senol, A.: Solvation–based vapour pressure model for (solvent + salt) systems in conjunction with the Antoine equation. J. Chem. Thermodyn. 67, 28–39 (2013)

    Article  CAS  Google Scholar 

  35. Senol, A.: Solvation–based modeling vapor pressures of (solvent + salt) systems with the application of Cox equation. Fluid Phase Equilib. 361, 155–170 (2014)

    Article  CAS  Google Scholar 

  36. Senol, A.: LSER-based modeling vapor pressures of (solvent + salt) systems by application of Xiang-Tan equation. Chin. J. Chem. Eng. 23, 1374–1383 (2015)

    Article  CAS  Google Scholar 

  37. Senol, A.: Modeling vapor pressures of solvent systems with and without a salt effect. An extension of the LSER approach. J. Chem. Thermodyn. 81, 1–15 (2015)

    Article  CAS  Google Scholar 

  38. Perry, R.H., Green, D.W., Maloney, J.O.: Perry’s Chemical Engineers’ Handbook, 7th edn. McGraw-Hill, New York (1997)

    Google Scholar 

  39. Ji, L., Li, P., Schoen, R., Simon, L.: Handbook of Geometric Analysis. International Press, Somerville (2008)1

    Google Scholar 

  40. Kostrikin, A.I., Manin, Y.I.: Linear Algebra and Geometry. Gordon and Breach Science Publishers, Amsterdam (1997)

    Google Scholar 

  41. Bhatti, M.A.: Practical Optimization Methods. Springer, New York (2000)

    Book  Google Scholar 

  42. Giannessi, F., Rapcsák, T., Komlósi, S.: New Trends in Mathematical Programming. Springer, Dordrecht (1998)

    Book  Google Scholar 

  43. Katritzky, A.R., Fara, D.C., Yang, H.F., Tämm, K., Tamm, T., Karelson, M.: Quantitative measures of solvent polarity. Chem. Rev. 104, 175–198 (2004)

    Article  CAS  PubMed  Google Scholar 

  44. Marcus, Y.: The properties of organic liquids that are relevant to their use as solvating solvents. Chem. Soc. Rev. 22, 409–416 (1993)

    Article  CAS  Google Scholar 

  45. Reichardt, C.: Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319–2358 (1994)

    Article  CAS  Google Scholar 

  46. Kamlet, M.J., Doherty, R.M., Abraham, M.H., Marcus, Y., Taft, R.W.: Linear solvation energy relationships. 46. An improved equation for correlation and prediction of octanol/water partition coefficients of organic nonelectrolytes (including strong hydrogen bond donor solutes). J. Phys. Chem. 92, 5244–5255 (1988)

    Article  CAS  Google Scholar 

  47. Marcus, Y.: Linear solvation energy relationships: correlation and prediction of the distribution of organic solutes between water and immiscible organic solvents. J. Phys. Chem. 95, 8886–8891 (1991)

    Article  CAS  Google Scholar 

  48. Marcus, Y., Kamlet, M.J., Taft, R.W.: Linear solvation energy relationships: standard molar Gibbs free energies and enthalpies of transfer of ions from water into nonaqueous solvents. J. Phys. Chem. 92, 3613–3622 (1988)

    Article  CAS  Google Scholar 

  49. Barton, A.F.M.: Solubility parameters. Chem. Rev. 75, 731–753 (1975)

    Article  CAS  Google Scholar 

  50. Soffer, N., Bioemendal, M., Marcus, Y.: Molar refractivities of tetra–n–alkylammonium salts and ions. J. Chem. Eng. Data 3, 43–46 (1988)

    Article  Google Scholar 

  51. Marcus, Y.: On enthalpies of hydration, ionization potentials and the softness of ions. Thermochim. Acta 104, 389–394 (1986)

    Article  CAS  Google Scholar 

  52. Reid, R.C., Prausnitz, J.M., Sherwood, T.K.: The Properties of Gases and Liquids, 3rd edn. McGraw-Hill, New York (1977)

    Google Scholar 

  53. Xiang, H.W., Tan, L.C.: A new vapor–pressure equation. Int. J. Thermophys. 15, 711–724 (1994)

    Article  CAS  Google Scholar 

  54. Xiang, H.W.: Vapor pressures from a corresponding–states principle for a wide range of polar molecular substances. Int. J. Thermophys. 22, 919–932 (2001)

    Article  CAS  Google Scholar 

  55. Frost, A.A., Kalkwarf, D.R.: A semi-empirical equation for the vapor pressure of liquids as a function of temperature. J. Chem. Phys. 21, 264–267 (1953)

    Article  CAS  Google Scholar 

  56. Leibovici, C.F., Nichita, D.V.: A quasi-analytical solution of Frost–Kalkwarf vapor pressure equation. Comput. Chem. Eng. 58, 378–380 (2013)

    Article  CAS  Google Scholar 

  57. Wagner, W.: New vapour pressure measurements for argon and nitrogen and a new method for establishing rational vapour pressure equations. Cryogenics 13, 470–482 (1973)

    Article  CAS  Google Scholar 

  58. Nichols, T., Utgikar, V.: Wagner equation predicting entire curve for pure fluids from limited VLE data. Critical point and four Antoine analytic points. Fluid Phase Equilib. 460, 1–16 (2018)

    Article  CAS  Google Scholar 

  59. McGarry, J.: Correlation and prediction of the vapor pressures of pure liquids over large pressure ranges. Ind. Eng. Chem. Proc. Des. Dev. 22, 313–322 (1983)

    Article  CAS  Google Scholar 

  60. Kolář, P., Nakata, H., Tsuboi, A., Wang, P., Anderko, A.: Measurement and modeling of vapor–liquid equilibria at high salt concentrations. Fluid Phase Equilib. 228–229, 493–497 (2005)

    Article  CAS  Google Scholar 

  61. Fu, J.: Salt effect on vapor–liquid equilibria for binary systems of propanol/CaCl2 and butanol/CaCl2. Fluid Phase Equilib. 237, 219–223 (2005)

    Article  CAS  Google Scholar 

  62. Fu, J.: Isobaric vapor liquid equilibrium for the methanol + ethanol + water + ammonium bromide system. J. Chem. Eng. Data 43, 403–408 (1998)

    Article  CAS  Google Scholar 

  63. Vercher, E., Orchillés, A.V., Miguel, P.J., González-Alfaro, V., Martínez-Andreu, A.: Isobaric vapor–liquid equilibria for acetone + methanol + lithium nitrate at 100 kPa. Fluid Phase Equilib. 250, 131–137 (2006)

    Article  CAS  Google Scholar 

  64. Vercher, E., Vázquez, M.I., Martínez-Andreu, A.: Isobaric vapor–liquid equilibria for 1–propanol + water + lithium nitrate at 100 kPa. Fluid Phase Equilib. 202, 121–132 (2002)

    Article  CAS  Google Scholar 

  65. Nie, N., Zheng, D., Dong, L., Li, Y.: Thermodynamic properties of the water + 1-(2-hydroxylethyl)-3-methylimidazolium chloride system. J. Chem. Eng. Data 57, 3598–3603 (2012)

    Article  CAS  Google Scholar 

  66. Safarov, J.T.: Vapor pressures of lithium bromide or lithium chloride and ethanol solutions. Fluid Phase Equilib. 243, 38–44 (2006)

    Article  CAS  Google Scholar 

  67. Yang, C., Ma, S., Yin, X.: Organic salt effect of tetramethylammonium bicarbonate on the vapor–liquid equilibrium of the methanol–water system. J. Chem. Eng. Data 56, 3747–3751 (2011)

    Article  CAS  Google Scholar 

  68. Himmelblau, D.M., Riggs, J.: Basic Principles and Calculations in Chemical Engineering, 8th edn. Prentice-Hall Inc., Englewood Cliffs, New Jersey (2012)

    Google Scholar 

  69. Kuo, S.S.: Computer Applications of Numerical Methods. Addison-Wesley, London (1972)

    Google Scholar 

  70. Johnson, N.L., Leone, F.C.: Statistics and Experimental Design in Engineering and the Physical Sciences. Wiley, New York (1964)

    Google Scholar 

  71. Zwillinger, D., Kokoska, S.: CRC Standard Probability and Statistics Tables and Formulae. CRC Press, New York (2010)

    Google Scholar 

  72. Senol, A.: Optimum mass transfer area in a pilot plant packed distillation column. J. Chem. Eng. Jpn. 39, 1265–1275 (2006)

    Article  CAS  Google Scholar 

  73. Kontogeorgis, G.M., Folas, G.K.: Thermodynamic Models for Industrial Applications. From Classical and Advanced Mixing Rules to Association Theories. Wiley, London (2010)

    Google Scholar 

  74. Kontogeorgis, G.M., Tsivintzelis, I., Michelsen, M.L., Stenby, E.H.: Towards predictive association theories. Fluid Phase Equilib. 301, 244–256 (2011)

    Article  CAS  Google Scholar 

  75. Senol, A.: Modeling liquid–liquid equilibrium of quaternary systems with Integrated Quadratic Solvation Relationship (IQSR) in conjunction with the boundary constraints identified by ternary subsystems. Fluid Phase Equilib. 478, 58–74 (2018)

    Article  CAS  Google Scholar 

  76. Olsen, R., Kvamme, B., Kuznetsova, T.: Hydrogen bond lifetimes and statistics of aqueous mono-, di- and tri-ethylene glycol. AIChE J. 63, 1674–1689 (2017)

    Article  CAS  Google Scholar 

  77. Hansen, C.M.: Hansen Solubility Parameters. A User’s Handbook, 2nd edn. CRC Press, Boca Raton (2007)

    Book  Google Scholar 

  78. Andreatta, A.E., Charnley, M.P., Brennecke, J.P.: Using ionic liquids to break the ethanol−ethyl acetate azeotrope. ACS Sustain. Chem. Eng. 3, 3435–3444 (2015)

    Article  CAS  Google Scholar 

  79. Endo, S., Pfennigsdorff, A., Goss, K.-U.: Salting-out effect in aqueous NaCl solutions: trends with size and polarity of solute molecules. Environ. Sci. Technol. 46, 1496–1503 (2012)

    Article  CAS  PubMed  Google Scholar 

  80. Endo, S., Droge, S.T.J., Goss, K.-U.: Polyparameter linear free energy models for polyacrylate fiber−water partition coefficients to evaluate efficiency of solid-phase microextraction. Anal. Chem. 83, 1394–1400 (2011)

    Article  CAS  PubMed  Google Scholar 

  81. Abraham, M.H., Ibrahim, A., Zissimos, A.M.: Determination of sets of solute descriptors from chromatographic measurements. J. Chromatogr. A 1037(1–2), 29–47 (2004)

    Article  CAS  PubMed  Google Scholar 

  82. Abraham, M.H.: Scales of solute hydrogen-bonding: their construction and application to physicochemical and biochemical processes. Chem. Soc. Rev. 22(1), 73–83 (1993)

    Article  CAS  Google Scholar 

  83. Oleszek-Kudlak, S., Grabda, M., Shibata, E., Eckert, F., Nakamura, T.: Application of the conductor-like screening model for real solvents for prediction of the aqueous solubility of chlorobenzenes depending on temperature and salinity. Environ. Toxicol. Chem. 24(6), 1368–1375 (2005)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The constructive proposals of the referees are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aynur Senol.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting information

The coefficients of Eqs. 6–9, complete set of the regression coefficients of Eqs. 10–16and the deviation statistics of model reliability analysis relating to systems I–XVI areprovided in the supplementary Tables S1–S11. This material is available free of charge viathe Internet at the Web site of the journal. (DOCX 375 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senol, A. Estimation of Vapor Pressures of Solvent + Salt Systems with Quadratic Solvation Relationships. J Solution Chem 49, 559–582 (2020). https://doi.org/10.1007/s10953-020-00983-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00983-3

Keywords

Navigation