Solid–Liquid Phase Equilibria in the Quinary System Na+, K+, Mg2+//Cl, \({\text{NO}}_{3}^{ - }\)–H2O and Its Subsystems at 258 K

Abstract

The phase equilibrium of the quaternary system Na+, K+, Mg2+//Cl–H2O and the quinary system Na+, K+, Mg2+//Cl, \({\text{NO}}_{3}^{ - }\)–H2O were investigated at 258 K using the isothermal dissolution equilibrium method. The phase diagrams were obtained based on the measured data. Double salt KCl·MgCl2·6H2O was found in the quaternary and the quinary systems at 258 K. In the quaternary system Na+, K+, Mg2+//Cl–H2O, there are two invariant points, five univariant curves, and four crystallization fields. The quinary system saturated with NaCl·2H2O contains four invariant points, nine univariant curves, and six crystallization fields corresponding to KCl, NaNO3, KNO3, Mg(NO3)2·6H2O, KCl·MgCl2·6H2O and MgCl2·8H2O. Mg(NO3)2·6H2O and MgCl2·8H2O that have higher concentrations and stronger salting-out effect on other salts. Therefore, low-temperature pretreatment can offer an alternative treatment of brines in accordance with the necessity for current brine treatment processes to reduce the presence of double salts and be crucial for purer products to be separated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. 1.

    Zheng, M.P.: On saline lakes of China. Miner. Dep. 20, 181–189 (2001)

    CAS  Google Scholar 

  2. 2.

    Zhang, B.Q.: Present status of development and utilization of nitrate resources and its development prospect in China. Ind. Miner. Proces. 36, 1–5 (2007)

    Google Scholar 

  3. 3.

    Steiger, M.: The geochemistry of nitrate deposits : I. Thermodynamics of Mg (NO3)2–H2O and solubilities in the Na+–Mg2+\({\text{NO}}_{3}^{ - }\)\({\text{SO}}_{4}^{2 - }\)–H2O system. Chem. Geol. 36, 84–97 (2016)

    Article  Google Scholar 

  4. 4.

    Chan, C.K., Liang, Z., Zheng, J., Clegg, S.L., Brimblecombe, P.: Thermodynamic properties of aqueous aerosols to high supersaturation: I–Measurements of water activity of the system Na+–Cl\({\text{NO}}_{3}^{ - }\)\({\text{SO}}_{4}^{2 - }\)–H2O at 298.15 K. Aerosol. Sci. Technol. 27, 324–344 (1997)

    CAS  Article  Google Scholar 

  5. 5.

    Weast, R.C., Astle, M.J., Beyer, W.H.: CRC handbook of Chemistry and Physics. CRC Press, Boca Raton (1983)

    Google Scholar 

  6. 6.

    Howard, S., Silcock, H.L.: Solubililies of Inorganic and Organic Compounds, 3rd edn. Pergamon Press, New York (1979)

    Google Scholar 

  7. 7.

    Huang, X.L., Song, P.S., Chen, L.J., Lu, B.L.: Liquid–solid equilibria in quinary system Na+, Mg2+//Cl,\({\text{SO}}_{4}^{2 - }\)\({\text{NO}}_{3}^{ - }\)–H2O at 298.15 K. Calphad 32, 188–194 (2008)

    CAS  Article  Google Scholar 

  8. 8.

    Huang, X.L., Zhu, L.J., Liang, T., Song, P.S.: Study on the phase equilibrium for the quinary system Na+, K+, Mg2+//Cl,\({\text{NO}}_{3}^{ - }\)–H2O at 298.16 K. Acta Chim. Sinica 65, 798–802 (2007)

    CAS  Google Scholar 

  9. 9.

    Yang, J., Wang, Y.F., Shu, M., Yang, L.B., Zhu, L., Zhao, X.Y., Shan, Z.L.: Solid–liquid equilibrium of quaternary system Na+//Cl,–\({\text{NO}}_{3}^{ - }\)\({\text{SO}}_{4}^{2 - }\)–H2O at 373.15 K. Fluid Phase Equilib. 445, 7–13 (2017)

    CAS  Article  Google Scholar 

  10. 10.

    Jin, Z.M., Xiao, X.Z., Liang, S.M.: Study of the metastable equilibrium for pentanary system of (Na+, K+, Mg2+), (Cl−, \({\text{SO}}_{4}^{2 - }\)), H2O. Acta Chim. Sin. 38, 313–321 (1980)

    CAS  Google Scholar 

  11. 11.

    Zhou, T., Wang, X.F., Huang, X.L., Li, H., Liu, N.: Liquid–solid metastable equilibria of a quinary system Na+, K+//Cl,\({\text{SO}}_{4}^{2 - }\),\({\text{NO}}_{3}^{ - }\)–H2O at 298 K. J. Chem. Eng 29, 510–515 (2015)

    CAS  Google Scholar 

  12. 12.

    Song, P.S., Dong, Y.P., Wu, L.: The phase diagram of Li+, Na+, K+//Cl−,\({\text{SO}}_{4}^{2 - }\)–H2O quinary system at 25 °C and its application. J. Salt Lake Res. 25, 9–17 (2017)

    Google Scholar 

  13. 13.

    Zhang, X., Huang, X.L.: Study on the phase equilibria of the quaternary system Na+//Cl−, \({\text{NO}}_{3}^{ - }\), \({\text{SO}}_{4}^{2 - }\)–H2O at low temperatures. Chemistry 78, 337–341 (2015)

    CAS  Google Scholar 

  14. 14.

    Liao, L., Huang, X.L., Song, H.: Phase equilibria of quinary system Na+, K+//Cl, \({\text{SO}}_{4}^{2 - }\), \({\text{NO}}_{3}^{ - }\) –H2O at 258.15 K. J. Chem. Eng. 30, 7–12 (2016)

    CAS  Google Scholar 

  15. 15.

    Zhu, Q.L., Huang, X.L.: Liquid-solid phase equilibrium of Na+, K+, Mg2+//Cl−, \({\text{SO}}_{4}^{2 - }\)–H2O system at −15°C. J. Chem. Ind. Eng. 66, 1252–1257 (2015)

    CAS  Google Scholar 

  16. 16.

    Ham, F.V.D., Witkamp, G.J., Graauw, J.D., Van Rosmalen, G.M.: Eutectic freeze crystallization simultaneous formation and separation of two solid phases. J. Cryst. Growth 198, 744–748 (1999)

    Google Scholar 

  17. 17.

    Kim, D.H.: A review of desalting process techniques and economic analysis of the recovery of salts from retentates. Desalination 270, 1–8 (2011)

    CAS  Article  Google Scholar 

  18. 18.

    Mahdavi, M., Mahvi, A.H., Nasseri, S., Yunesian, M.: Application of freezing to the desalination of saline water. J. Sci. Eng. 36, 1171–1177 (2011)

    CAS  Google Scholar 

  19. 19.

    Hasan, M., Rotich, N., John, M., Louhi-Kultanen, M.: Salt recovery from wastewater by air-cooled eutectic freeze crystallization. Chem. Eng. J. 326, 192–200 (2017)

    CAS  Article  Google Scholar 

  20. 20.

    Rich, A., Mandri, Y., Mangin, D., Rivoire, A., Abderafi, S.: Sea water desalination by dynamic layer melt crystallization: parametric study of the freezing and sweating steps. J. Cryst. Growth 342, 110–116 (2012)

    CAS  Article  Google Scholar 

  21. 21.

    Vaessen, R., Seckler, M., Witkamp, G.J.: Eutectic freeze crystallization with an aqueous KNO3−HNO3 solution in a 100-L cooled-disk column crystallizer. Ind. Eng. Chem. Res. 42, 4874–4880 (2003)

    CAS  Article  Google Scholar 

  22. 22.

    Hasan, M., Filimonov, R., Chivavava, J., Sorvari, J., Louhi-Kultanen, M., Lewis, A.E.: Ice growth on the cooling surface in a jacketed and stirred eutectic freeze crystallizer of aqueous Na2SO4 solutions. Sep. Purif. Technol. 175, 512–526 (2017)

    CAS  Article  Google Scholar 

  23. 23.

    Christov, C.: Chemical equilibrium model of solution behavior and bishofite (MgCl2·6H2O(cr)) and hydrogen-carnallite (HCl·MgCl2·7H2O(cr)) solubility in the MgCl2+H2O and HCl·MgCl2+H2O systems to high acid concentration at (0 to 100) °C. J. Chem. Eng. Data 54, 2599–2608 (2009)

    CAS  Article  Google Scholar 

  24. 24.

    Christov, C.: Isopiestic determination of the osmotic coefficients of an aqueous MgCl2 + CaCl2 mixed solution at (25 and 50)° C. Chemical equilibrium model of solution behavior and solubility in the MgCl2 + H2O and MgCl2 + CaCl2 + H2O systems to high concentration at (25 and 50)°C. J. Chem. Eng. Data 54, 627–635 (2008)

    Article  Google Scholar 

  25. 25.

    Pabalan, R.T., Pitzer, K.S.: Thermodynamics of concentrated electrolyte mixtures and the prediction of mineral solubilities to high temperatures for mixtures in the system Na−K−Mg−Cl−SO4−OH−H2O. Geochim. Cosmochim. Acta 51, 2429–2443 (1987)

    CAS  Article  Google Scholar 

  26. 26.

    Spenser, R., Moller, N., Weare, J.: The prediction of mineral solubilities in natural waters: a chemical equilibrium model for the Na−K−Ca−Mg−Cl−SO4−H2O system at temperatures below 25 °C. Geochim. Cosmochim. Acta 54, 575–590 (1990)

    Article  Google Scholar 

  27. 27.

    Drebushchak, V.A., Ogienko, A.G., Yunoshev, A.S.: Metastable eutectic melting in the NaCl−H2O system. Thermochim. Acta 647, 94–100 (2017)

    CAS  Article  Google Scholar 

  28. 28.

    Dubessy, J., Audeoud, D., Wilkins, R., Kosztolanyi, C.: The use of the Raman microprobe MOLE in the determination of the electrolytes dissolved in the aqueous phase of fluid inclusions. Chem. Geol. 37, 137–150 (1982)

    CAS  Article  Google Scholar 

  29. 29.

    Samson, I.M., Walker, R.T.: Cryogenic Raman spectroscopic studies in the system NaCl–CaCl2–H2O and implications for low temperature phase behavior in aqueous fluid inclusions. Can. Mineral. 38, 35–43 (2000)

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors greatly acknowledge the financial support from the program of the National Natural Science Foundation of China (Grant No. 21766033) and the foundation of Key Laboratory of Cleaner Transition of Coal & Chemicals Engineering of Xinjiang University.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xue-Li Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Huang, X., Wang, X. et al. Solid–Liquid Phase Equilibria in the Quinary System Na+, K+, Mg2+//Cl, \({\text{NO}}_{3}^{ - }\)–H2O and Its Subsystems at 258 K. J Solution Chem (2020). https://doi.org/10.1007/s10953-020-00978-0

Download citation

Keywords

  • Nitrate
  • Low temperature
  • Double salt
  • Solubility