Skip to main content
Log in

Extending the Marcus μ-Scale of Solvent Softness Using Conceptual Density Functional Theory and the Orbital Overlap Distance: Method and Application to Ionic Liquids

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The chemical hardness of a solvent can play a decisive role in solubility and reactivity in solution. Several empirical scales quantifying solvent softness have been proposed. We explore whether computed properties of solvent molecules can reproduce these experimental scales. Our “orbital overlap distance” quantifying the size of orbitals at a molecule’s surface effectively reproduces the Marcus μ-scale of solvent softness. The orbital overlap distance predicts that the surface of chemically hard solvent molecules is dominated by compact orbitals possessing a small orbital overlap distance. In contrast, the surface of chemically soft solvent molecules has a larger contribution from diffuse orbitals and a larger orbital overlap distance. Other conceptual density functional theory descriptors, including the global hardness and electronegativity, can also reproduce the Marcus scale. We further introduce a “solvent versatility” RMSD Dsurf scale quantifying variations in the surface orbital overlap distance. “Good” solvents such as DMSO, which combine chemically “hard” and “soft” sites within a single molecule, possess a large RMSD Dsurf. We conclude by applying this approach to predict the Marcus μ-parameters for widely-used ionic liquids and ionic liquid–cosolvent systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lewis, G.N.: Valence and the Structure of Atoms and Molecules. Dover Publications, New York (1923)

    Google Scholar 

  2. Lewis, G.N.: Acids and bases. J. Franklin Inst. 226(3), 293–313 (1938). https://doi.org/10.1016/S0016-0032(38)91691-6

    Article  Google Scholar 

  3. Chen, T., Hefter, G., Marcus, Y.: Relationships among solvent softness scales. J. Solution Chem. 29(3), 201–216 (2000). https://doi.org/10.1023/a:1005114615767

    Article  CAS  Google Scholar 

  4. Pearson, R.G.: Hard and soft acids and bases. J. Am. Chem. Soc. 85(22), 3533–3539 (1963). https://doi.org/10.1021/ja00905a001

    Article  CAS  Google Scholar 

  5. Pearson, R.G.: Acids and bases. Science 151(3707), 172–177 (1966). https://doi.org/10.1126/science.151.3707.172

    Article  CAS  PubMed  Google Scholar 

  6. Pearson, R.G.: Hard and soft acids and bases—the evolution of a chemical concept. Coord. Chem. Rev. 100, 403–425 (1990). https://doi.org/10.1016/0010-8545(90)85016-L

    Article  CAS  Google Scholar 

  7. Reichardt, C., Welton, T.: Solvents and Solvent Effects in Organic Chemistry. Wiley, Hoboken (2011)

    Google Scholar 

  8. Bogachev, N.A., Gorbunov, A.O., Tikhomirova, A.A., Pushikhina, O.S., Skripkin, M.Y., Nikolskii, A.B.: Solubility of d-elements salts in organic and aqueous-organic solvents: I. Copper, cobalt, and cadmium sulfates. Russ. J. Gen. Chem. 85(11), 2509–2512 (2015). https://doi.org/10.1134/s107036321511002x

    Article  CAS  Google Scholar 

  9. Gorbunov, A.O., Tsyrulnikov, N.A., Tikhomirova, A.A., Bogachev, N.A., Skripkin, M.Y., Nikolskii, A.B., Pestova, O.N.: Solubility of d-element salts in organic and aqueous–organic solvents: II. Effect of halocomplex formation on solubility of cobalt bromide and chloride and nickel chloride. Russ. J. Gen. Chem. 86(4), 771–777 (2016). https://doi.org/10.1134/s1070363216040022

    Article  CAS  Google Scholar 

  10. Payehghadr, M., Hashemi, S.E.: Solvent effect on complexation reactions. J. Incl. Phenom. Macrocycl. Chem. 89(3), 253–271 (2017). https://doi.org/10.1007/s10847-017-0759-8

    Article  CAS  Google Scholar 

  11. Claisen, L.: Über C-alkylierung (Kernalkylierung) von Phenolen. Angew. Chem. 36(65), 478–479 (1923). https://doi.org/10.1002/ange.19230366502

    Article  CAS  Google Scholar 

  12. Kornblum, N., Berrigan, P.J., le Noble, W.J.: Chemical effects arising from selective solvation: selective solvation as a factor in the alkylation of ambident anions. J. Am. Chem. Soc. 82(5), 1257–1258 (1960). https://doi.org/10.1021/ja01490a063

    Article  CAS  Google Scholar 

  13. Kornblum, N., Berrigan, P.J., Le Noble, W.J.: Solvation as a factor in the alkylation of ambident anions: the importance of the hydrogen bonding capacity of the solvent. J. Am. Chem. Soc. 85(8), 1141–1147 (1963). https://doi.org/10.1021/ja00891a024

    Article  CAS  Google Scholar 

  14. Hughes, E.D., Ingold, C.K.: Mechanism of substitution at a saturated carbon atom. Part IV. A discussion of constitutional and solvent effects on the mechanism, kinetics, velocity, and orientation of substitution. J. Chem. Soc. (1935). https://doi.org/10.1039/JR9350000244

    Article  Google Scholar 

  15. Hughes, E.D.: Mechanism and kinetics of substitution at a saturated carbon atom. Trans. Faraday Soc. 37, 603–631 (1941). https://doi.org/10.1039/TF9413700603

    Article  CAS  Google Scholar 

  16. Cooper, K.A., Dhar, M.L., Hughes, E.D., Ingold, C.K., MacNulty, B.J., Woolf, L.I.: Mechanism of elimination reactions. Part VII. Solvent effects on rates and product-proportions in uni- and bi-molecular substitution and elimination reactions of alkyl halides and sulphonium salts in hydroxylic solvents. J. Chem. Soc. (1948). https://doi.org/10.1039/JR9480002043

    Article  Google Scholar 

  17. Greenwald, R., Chaykovsky, M., Corey, E.J.: The Wittig reaction using methylsulfinyl carbanion-dimethyl sulfoxide 1. J. Org. Chem. 28(4), 1128–1129 (1963). https://doi.org/10.1021/jo01039a502

    Article  CAS  Google Scholar 

  18. Laoire, C.O., Mukerjee, S., Abraham, K.M., Plichta, E.J., Hendrickson, M.A.: Influence of nonaqueous solvents on the electrochemistry of oxygen in the rechargeable lithium−air battery. J. Phys. Chem. C 114(19), 9178–9186 (2010). https://doi.org/10.1021/jp102019y

    Article  CAS  Google Scholar 

  19. Marcus, Y.: The use of chemical probes for the characterization of solvent mixtures. Part 2. Aqueous mixtures. J. Chem. Soc. Perkin Trans. 2(8), 1751–1758 (1994). https://doi.org/10.1039/P29940001751

    Article  Google Scholar 

  20. Allen, C.J., Hwang, J., Kautz, R., Mukerjee, S., Plichta, E.J., Hendrickson, M.A., Abraham, K.M.: Oxygen reduction reactions in ionic liquids and the formulation of a general ORR mechanism for Li–air batteries. J. Phys. Chem. C 116(39), 20755–20764 (2012). https://doi.org/10.1021/jp306718v

    Article  CAS  Google Scholar 

  21. Peppel, T., Köckerling, M., Geppert-Rybczyńska, M., Ralys, R.V., Lehmann, J.K., Verevkin, S.P., Heintz, A.: Low-viscosity paramagnetic ionic liquids with doubly charged [Co(NCS)4]2− Ions. Angew. Chem. Int. Ed. 49(39), 7116–7119 (2010). https://doi.org/10.1002/anie.201000709

    Article  CAS  Google Scholar 

  22. Tsurumaki, A., Trequattrini, F., Palumbo, O., Panero, S., Paolone, A., Navarra, M.A.: The effect of ether-functionalisation in ionic liquids analysed by DFT calculation, infrared spectra, and Kamlet-Taft parameters. PCCP 20(12), 7989–7997 (2018). https://doi.org/10.1039/C7CP08134K

    Article  CAS  PubMed  Google Scholar 

  23. Tsurumaki, A., Kagimoto, J., Ohno, H.: Properties of polymer electrolytes composed of poly(ethylene oxide) and ionic liquids according to hard and soft acids and bases theory. Polym. Adv. Technol. 22(8), 1223–1228 (2011). https://doi.org/10.1002/pat.1931

    Article  CAS  Google Scholar 

  24. Marcus, Y.: Linear solvation energy relationships: a scale describing the “softness” of solvents. J. Phys. Chem. 91(16), 4422–4428 (1987). https://doi.org/10.1021/j100300a044

    Article  CAS  Google Scholar 

  25. Persson, I., Sandström, M., Goggin, P.L.: On the coordinating properties of some solvents. A vibrational spectroscopic study of mercury(II) halides and antimony(V) chloride in solution; new concepts for Lewis basicity scales of solvents. Inorg. Chim. Acta 129(2), 183–197 (1987). https://doi.org/10.1016/S0020-1693(00)86662-1

    Article  CAS  Google Scholar 

  26. Laurence, C., Queignec-Cabanetos, M., Dziembowska, T., Queignec, R., Wojtkowiak, B.: 1-Iodoacetylenes 1 Spectroscopic evidence of their complexes with Lewis bases. A spectroscopic scale of soft basicity. J. Am. Chem. Soc. 103(10), 2567–2573 (1981). https://doi.org/10.1021/ja00400a014

    Article  CAS  Google Scholar 

  27. Gritzner, G.: Solvent effects on half-wave potentials. J. Phys. Chem. 90(21), 5478–5485 (1986). https://doi.org/10.1021/j100412a116

    Article  CAS  Google Scholar 

  28. Gutmann, V., Wychera, E.: Coordination reactions in non aqueous solutions: the role of the donor strength. Inorg. Nucl. Chem. Lett. 2(9), 257–260 (1966). https://doi.org/10.1016/0020-1650(66)80056-9

    Article  CAS  Google Scholar 

  29. Maria, P.C., Gal, J.F.: A Lewis basicity scale for nonprotogenic solvents: enthalpies of complex formation with boron trifluoride in dichloromethane. J. Phys. Chem. 89(7), 1296–1304 (1985). https://doi.org/10.1021/j100253a048

    Article  CAS  Google Scholar 

  30. Oshima, T., Arikata, S., Nagai, T.: Solvent effects in the reaction of diazodiphenylmethane with tetracycanoethylene: a new empirical parameter of solvent basicity. J. Chem. Res. 2, 204–205 (1981)

    Google Scholar 

  31. Dong, D.C., Winnik, M.A.: The Py scale of solvent polarities. Solvent effects on the vibronic fine structure of pyrene fluorescence and empirical correlations with Et and Y values. Photochem. Photobiol. 35(1), 17–21 (1982). https://doi.org/10.1111/j.1751-1097.1982.tb03805.x

    Article  CAS  Google Scholar 

  32. Katritzky, A.R., Tamm, T., Wang, Y., Sild, S., Karelson, M.: QSPR treatment of solvent scales. J. Chem. Inf. Comput. Sci. 39(4), 684–691 (1999). https://doi.org/10.1021/ci980225h

    Article  CAS  Google Scholar 

  33. Gutmann, V.: Empirical parameters for donor and acceptor properties of solvents. Electrochim. Acta 21(9), 661–670 (1976). https://doi.org/10.1016/0013-4686(76)85034-7

    Article  CAS  Google Scholar 

  34. Persson, I.: Solvation and complex formation in strongly solvating solvents. Pure Appl. Chem. 58(8), 1153–1161 (1986)

    Article  CAS  Google Scholar 

  35. Sandström, M., Persson, I., Persson, P.: A study of solvent electron-pair donor ability and Lewis basicity scales. Acta Chem. Scand 44(7), 653–675 (1990). https://doi.org/10.3891/acta.chem.scand.44-0653

    Article  Google Scholar 

  36. Geerlings, P., De Proft, F., Langenaeker, W.: Conceptual density functional theory. Chem. Rev. 103(5), 1793–1874 (2003). https://doi.org/10.1021/cr990029p

    Article  CAS  PubMed  Google Scholar 

  37. Parr, R.G., Pearson, R.G.: Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105(26), 7512–7516 (1983). https://doi.org/10.1021/ja00364a005

    Article  CAS  Google Scholar 

  38. Ayers, P.W.: An elementary derivation of the hard/soft-acid/base principle. J. Chem. Phys. 122(14), 141102 (2005). https://doi.org/10.1063/1.1897374

    Article  CAS  PubMed  Google Scholar 

  39. Yang, W., Parr, R.G.: Hardness, softness, and the fukui function in the electronic theory of metals and catalysis. Proc. Natl. Acad. Sci. U.S.A. 82(20), 6723–6726 (1985). https://doi.org/10.1073/pnas.82.20.6723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jayakumar, N., Kolandaivel, P.: Studies of isomer stability using the maximum hardness principle (MHP). Int. J. Quantum Chem. 76(5), 648–655 (2000). https://doi.org/10.1002/(SICI)1097-461X(2000)76:5%3c648:AID-QUA7%3e3.0.CO;2-Y

    Article  CAS  Google Scholar 

  41. Padmanabhan, J., Parthasarathi, R., Subramanian, V., Chattaraj, P.K.: Molecular structure, reactivity, and toxicity of the complete series of chlorinated benzenes. J. Phys. Chem. A 109(48), 11043–11049 (2005). https://doi.org/10.1021/jp0538621

    Article  CAS  PubMed  Google Scholar 

  42. Senthilkumar, K., Kolandaivel, P.: Hartree–Fock and density functional theory studies on ionization and fragmentation of halomethane molecules by positron impact. Mol. Phys. 100(24), 3817–3822 (2002). https://doi.org/10.1080/00268970210161939

    Article  CAS  Google Scholar 

  43. Shankar, R., Senthilkumar, K., Kolandaivel, P.: Calculation of ionization potential and chemical hardness: a comparative study of different methods. Int. J. Quantum Chem. 109(4), 764–771 (2009). https://doi.org/10.1002/qua.21883

    Article  CAS  Google Scholar 

  44. Geerlings, P., De Proft, F.: HSAB principle: applications of its global and local forms in organic chemistry. Int. J. Quantum Chem. 80(2), 227–235 (2000). https://doi.org/10.1002/1097-461X(2000)80:2%3c227:AID-QUA17%3e3.0.CO;2-N

    Article  CAS  Google Scholar 

  45. Langenaeker, W., de Proft, F., Geerlings, P.: Development of local hardness-related reactivity indices: their application in a study of the SE at monosubstituted benzenes within the HSAB context. J. Phys. Chem. 99(17), 6424–6431 (1995). https://doi.org/10.1021/j100017a022

    Article  CAS  Google Scholar 

  46. Mendez, F., Garcia-Garibay, M.A.: A Hard−soft acid−base and DFT analysis of singlet−triplet gaps and the addition of singlet carbenes to alkenes. J. Org. Chem. 64(19), 7061–7066 (1999). https://doi.org/10.1021/jo990584r

    Article  CAS  Google Scholar 

  47. Chattaraj, P.K., Fuentealba, P., Gómez, B., Contreras, R.: Woodward−Hoffmann rule in the light of the principles of maximum hardness and minimum polarizability: DFT and ab initio SCF studies. J. Am. Chem. Soc. 122(2), 348–351 (2000). https://doi.org/10.1021/ja992337a

    Article  CAS  Google Scholar 

  48. Balawender, R., Komorowski, L., De Proft, F., Geerlings, P.: Derivatives of molecular valence as a measure of aromaticity. J. Phys. Chem. A 102(48), 9912–9917 (1998). https://doi.org/10.1021/jp982447o

    Article  CAS  Google Scholar 

  49. Sarmah, P., Deka, R.C.: Solvent effect on the reactivity of CIS-platinum(II) complexes: a density functional approach. Int. J. Quantum Chem. 108(8), 1400–1409 (2008). https://doi.org/10.1002/qua.21635

    Article  CAS  Google Scholar 

  50. Panina, N.S., Calligaris, M.: Density functional study of linkage isomerism in dimethyl sulfoxide Ru(III) and Rh(III) complexes. Inorg. Chim. Acta 334, 165–171 (2002). https://doi.org/10.1016/S0020-1693(02)00752-1

    Article  CAS  Google Scholar 

  51. Bania, K.K., Deka, R.C.: Influence of Zeolite framework on the structure, properties, and reactivity of cobalt phenanthroline complex: a combined experimental and computational study. J. Phys. Chem. C 115(19), 9601–9607 (2011). https://doi.org/10.1021/jp2003672

    Article  CAS  Google Scholar 

  52. Islam, N., Kaya, S.: Conceptual Density Functional Theory and Its Application in the Chemical Domain. Apple Academic Press, New York (2018)

    Book  Google Scholar 

  53. Frau, J., Hernández-Haro, N., Glossman-Mitnik, D.: Computational prediction of the pKas of small peptides through conceptual DFT descriptors. Chem. Phys. Lett. 671, 138–141 (2017). https://doi.org/10.1016/j.cplett.2017.01.038

    Article  CAS  Google Scholar 

  54. Putz, M.V., Mingos, D.M.P.: Applications of Density Functional Theory to Chemical Reactivity. Springer, Berlin (2013)

    Google Scholar 

  55. Pearson, R.G.: Chemical Hardness: Applications from Molecules to Solids. Wiley, Hoboken (1998)

    Google Scholar 

  56. Bader, R.F.W., Carroll, M.T., Cheeseman, J.R., Chang, C.: Properties of atoms in molecules: atomic volumes. J. Am. Chem. Soc. 109(26), 7968–7979 (1987). https://doi.org/10.1021/ja00260a006

    Article  CAS  Google Scholar 

  57. Politzer, P., Murray, J.S.: σ-holes and π-holes: Similarities and differences. J. Comput. Chem. 39(9), 464–471 (2018). https://doi.org/10.1002/jcc.24891

    Article  CAS  PubMed  Google Scholar 

  58. Kolář, M.H., Hobza, P.: Computer modeling of halogen bonds and other σ-hole interactions. Chem. Rev. 116(9), 5155–5187 (2016). https://doi.org/10.1021/acs.chemrev.5b00560

    Article  CAS  PubMed  Google Scholar 

  59. Mehmood, A., Janesko, B.G.: An orbital-overlap complement to atomic partial charge. Angew. Chem. Int. Ed. 56(24), 6878–6881 (2017). https://doi.org/10.1002/anie.201702715

    Article  CAS  Google Scholar 

  60. Janesko, B.G., Wiberg, K.B., Scalmani, G., Frisch, M.J.: Electron delocalization range in atoms and on molecular surfaces. J. Chem. Theory Comput. 12(7), 3185–3194 (2016). https://doi.org/10.1021/acs.jctc.6b00343

    Article  CAS  PubMed  Google Scholar 

  61. Gritzner, G., Auinger, M.: Statistical analysis of Gibbs energies of transfer of cations and soft solvent parameters. Acta Chim. Slov. 56(1), 86–94 (2009)

    CAS  Google Scholar 

  62. Armand, M., Endres, F., MacFarlane, D.R., Ohno, H., Scrosati, B.: Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621 (2009). https://doi.org/10.1038/nmat2448

    Article  CAS  PubMed  Google Scholar 

  63. Wilkes, J.S.: A short history of ionic liquids—from molten salts to neoteric solvents. Green Chem. 4(2), 73–80 (2002). https://doi.org/10.1039/B110838G

    Article  CAS  Google Scholar 

  64. Van Aken, K.L., Beidaghi, M., Gogotsi, Y.: Formulation of ionic-liquid electrolyte to expand the voltage window of supercapacitors. Angew. Chem. Int. Ed. 54(16), 4806–4809 (2015). https://doi.org/10.1002/anie.201412257

    Article  CAS  Google Scholar 

  65. Hayes, R., Warr, G.G., Atkin, R.: Structure and nanostructure in ionic liquids. Chem. Rev. 115(13), 6357–6426 (2015). https://doi.org/10.1021/cr500411q

    Article  CAS  PubMed  Google Scholar 

  66. MacFarlane, D.R., Tachikawa, N., Forsyth, M., Pringle, J.M., Howlett, P.C., Elliott, G.D., Davis, J.H., Watanabe, M., Simon, P., Angell, C.A.: Energy applications of ionic liquids. Energy Environ. Sci. 7(1), 232–250 (2014). https://doi.org/10.1039/C3EE42099J

    Article  CAS  Google Scholar 

  67. Zhao, Y., Wang, J., Wang, H., Li, Z., Liu, X., Zhang, S.: Is there any preferential interaction of ions of ionic liquids with DMSO and H2O? A comparative study from MD simulation. J. Phys. Chem. B 119(22), 6686–6695 (2015). https://doi.org/10.1021/acs.jpcb.5b01925

    Article  CAS  PubMed  Google Scholar 

  68. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery Jr., J.A., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: Gaussian 09. Gaussian Inc, Wallingford, CT (2009)

    Google Scholar 

  69. Becke, A.D.: A new mixing of Hartree–Fock and local density-functional theories. J. Chem. Phys. 98(2), 1372–1377 (1993). https://doi.org/10.1063/1.464304

    Article  CAS  Google Scholar 

  70. Lee, C., Yang, W., Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785–789 (1988). https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  71. Francl, M.M., Pietro, W.J., Hehre, W.J., Binkley, J.S., Gordon, M.S., DeFrees, D.J., Pople, J.A.: Self-consistent molecular orbital methods. XXIII. A polarization-type basis set for second-row elements. J. Chem. Phys. 77(7), 3654–3665 (1982). https://doi.org/10.1063/1.444267

    Article  CAS  Google Scholar 

  72. Hariharan, P.C., Pople, J.A.: Accuracy of AH AnD equilibrium geometries by single determinant molecular orbital theory. Mol. Phys. 27(1), 209–214 (1974). https://doi.org/10.1080/00268977400100171

    Article  CAS  Google Scholar 

  73. Hariharan, P.C., Pople, J.A.: The influence of polarization functions on molecular orbital hydrogenation energies. Theor. Chim. Acta 28(3), 213–222 (1973). https://doi.org/10.1007/bf00533485

    Article  CAS  Google Scholar 

  74. Hehre, W.J., Ditchfield, R., Pople, J.A.: Self-consistent molecular orbital methods. XII. Further extensions of Gaussian-type basis sets for use in molecular orbital studies of organic molecules. J. Chem. Phys. 56(5), 2257–2261 (1972). https://doi.org/10.1063/1.1677527

    Article  CAS  Google Scholar 

  75. Ditchfield, R., Hehre, W.J., Pople, J.A.: Self-consistent molecular-orbital methods. IX. An extended Gaussian-type basis for molecular-orbital studies of organic molecules. J. Chem. Phys. 54(2), 724–728 (1971). https://doi.org/10.1063/1.1674902

    Article  CAS  Google Scholar 

  76. Lu, T., Chen, F.: Multiwfn: a multifunctional wavefunction analyzer. J. Comput. Chem. 33(5), 580–592 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  77. Lu, T., Chen, F.: Quantitative analysis of molecular surface based on improved Marching Tetrahedra algorithm. J. Mol. Graph. Model. 38, 314–323 (2012). https://doi.org/10.1016/j.jmgm.2012.07.004

    Article  CAS  PubMed  Google Scholar 

  78. Dogonadze, R.R., Kalman, E., Kornyshev, A.A.: The Chemical Physics of Solvation: Theory of Solvation. Elsevier, Amsterdam (1985)

    Google Scholar 

  79. Fujii, K., Fujimori, T., Takamuku, T., Kanzaki, R., Umebayashi, Y., Ishiguro, S.-I.: Conformational equilibrium of bis(trifluoromethanesulfonyl) imide anion of a room-temperature ionic liquid: Raman spectroscopic study and DFT calculations. J. Phys. Chem. B 110(16), 8179–8183 (2006). https://doi.org/10.1021/jp0612477

    Article  CAS  PubMed  Google Scholar 

  80. Umebayashi, Y., Fujimori, T., Sukizaki, T., Asada, M., Fujii, K., Kanzaki, R., Ishiguro, S.-I.: Evidence of conformational equilibrium of 1-ethyl-3-methylimidazolium in its ionic liquid salts: Raman spectroscopic study and quantum chemical calculations. J. Phys. Chem. A 109(40), 8976–8982 (2005). https://doi.org/10.1021/jp053476j

    Article  CAS  PubMed  Google Scholar 

  81. Singh, D.K., Cha, S., Nam, D., Cheong, H., Joo, S.-W., Kim, D.: Raman spectroscopic study on alkyl chain conformation in 1-butyl-3-methylimidazolium ionic liquids and their aqueous mixtures. ChemPhysChem 17(19), 3040–3046 (2016). https://doi.org/10.1002/cphc.201600485

    Article  CAS  PubMed  Google Scholar 

  82. Xu, A., Zhang, Y., Zhao, Y., Wang, J.: Cellulose dissolution at ambient temperature: role of preferential solvation of cations of ionic liquids by a cosolvent. Carbohydr. Polym. 92(1), 540–544 (2013). https://doi.org/10.1016/j.carbpol.2012.09.028

    Article  CAS  PubMed  Google Scholar 

  83. Zhao, Y., Liu, X., Wang, J., Zhang, S.: Insight into the cosolvent effect of cellulose dissolution in imidazolium-based ionic liquid systems. J. Phys. Chem. B 117(30), 9042–9049 (2013). https://doi.org/10.1021/jp4038039

    Article  CAS  PubMed  Google Scholar 

  84. Gupta, K.M., Jiang, J.: Cellulose dissolution and regeneration in ionic liquids: a computational perspective. Chem. Eng. Sci. 121, 180–189 (2015). https://doi.org/10.1016/j.ces.2014.07.025

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (DMR-1505343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arshad Mehmood.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10953_2020_973_MOESM1_ESM.docx

Supplementary file1 (DOCX 1036 kb) The following quantities are reported in the supplementary material. HOMO–LUMO surface plots of selective solvents, correlation between μ and 1/Gap, mean Dsurf and 1/Gap and μ and 1/Gap. Experimental μ values of solvent and their calculated values of mean Dsurf and RMSD Dsurf, with and without neutral regions. Calculated values of 1/Gap and 1/(IA) for all solvents. Calculated values for ionic liquids. Experimental values of Ds and DN used in this study. Basis set dependence of Dsurf and RMSD Dsurf.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, A., Janesko, B.G. Extending the Marcus μ-Scale of Solvent Softness Using Conceptual Density Functional Theory and the Orbital Overlap Distance: Method and Application to Ionic Liquids. J Solution Chem 49, 614–628 (2020). https://doi.org/10.1007/s10953-020-00973-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00973-5

Keywords

Navigation