Skip to main content
Log in

Using Diaminomethanal as an Entrainer for the Separation of Isopropanol + Water Mixture

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Diaminomethanal (an organic compound), was examined as entrainer for dehydration of isopropanol−water system by extractive distillation. Isobaric vapor−liquid equilibrium (VLE) data were studied for isopropanol−water−diaminomethanal system at 101.3 kPa, employing modified Othmer type still. The VLE data studied for the system comprising diaminomethanal were quite different from that of diaminomethanal-free system. The diaminomethanal represented a significant increase in the relative volatility of the isopropanol−water solution and led to termination of the azeotrope at a specific concentration. It was observed that the relative volatility for isopropanol−water mixture increases continuously with the increase in diaminomethanal concentration till 15.7 mol%. Results demonstrate that diaminomethanal is a functional entrainer for the separation of isopropanol−water mixture and 13 mol% of diaminomethanal concentration is enough to terminate the azeotrope. Furthermore, the experimental VLE data for ternary system were correlated by nonrandom two-liquid (NRTL) model and predicted values correlated with the experimental data very well. Further, the experimental data was verified for thermodynamic consistency by Wisniak–Tamir’s modification of McDermott-Ellis and Wisniak’s L-W thermodynamic consistency test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Likozar, B., Levec, J.: Transesterification of canola, palm, peanut, soybean and sunflower oil with methanol, ethanol, isopropanol, butanol and tert-butanol to biodiesel: modelling of chemical equilibrium, reaction kinetics and mass transfer based on fatty acid composition. Appl. Energy 123, 108–120 (2014)

    Article  CAS  Google Scholar 

  2. Kroschwitz, J.I., Othmer, K.: Encyclopedia of chemical technology. Wiley, New York (1991)

    Google Scholar 

  3. Moon, G.Y., Pal, R., Huang, R.Y.M.: Novel two-ply composite membranes of chitosan and sodium alginate for the pervaporation dehydration of isopropanol and ethanol. J. Membr. Sci. 156, 17–27 (1999)

    Article  Google Scholar 

  4. Robert, C.W., Melvin, J.A., William, H.B.: CRC handbook of chemistry and physics, 67th edn. CRC Press, Boca Ratons (1986)

    Google Scholar 

  5. Dhanuja, G., Smitha, B., Sridhar, S.: Pervaporation of isopropanol–water mixtures through polyion complex membranes. Sep. Purif. Technol. 44, 130–138 (2005)

    Article  CAS  Google Scholar 

  6. Mujiburohman, M., Sediawan, W.B., Sulistyo, H.A.: Preliminary study: Distillation of isopropanol–water mixture using fixed adsorptive distillation method. Sep. Purif. Technol. 48, 85–92sss (2006)

    Article  CAS  Google Scholar 

  7. Garcı́a-Payo, M.C., Izquierdo-Gil, M.A., Fernández-Pineda, C.: Air gap membrane distillation of aqueous alcohol solutions. J. Membr. Sci. 169, 61–80 (2000)

    Article  Google Scholar 

  8. Singh, N., Prasad, R.: Fuel grade ethanol by diffusion distillation: an experimental study. J. Chem. Technol. Biotechnol. 86, 724–730 (2011)

    Article  CAS  Google Scholar 

  9. Singh, N., Prasad, R.: Experimental studies on the effect of inert gases on diffusion distillation of ethanol–water mixtures. J Chem Technol Biotechnol. 86, 495–1500 (2011)

    Google Scholar 

  10. Van Hoof, V., Abeele, L.V., Buekenhoudt, A., Dotremont, C., Leysen, R.: Economic comparison between azeotropic distillation and different hybrid systems combining distillation with pervaporation for the dehydration of isopropanol. Sep. Purif. Technol. 37, 33–49 (2004)

    Article  Google Scholar 

  11. Sada, E., Morisue, T., Yamaji, H.: Salt effects on isobaric vapour-liquid equilibrium of isopropanol-water system. Can. J. Chem. Eng. 53, 350–353 (1975)

    Article  CAS  Google Scholar 

  12. Gironi, F., Lamberti, L.: Vapour-liquid equilibrium data for the water-2-propanol system in the presence of dissolved salts. Fluid Ph. Equilib. 105, 273–286 (1995)

    Article  CAS  Google Scholar 

  13. Zhigang, T., Rongqi, Z., Zhanting, D.: Separation of isopropanol from aqueous solution by salting-out extraction. J. Chem. Technol. Biotechnol. 76, 757–763 (2001)

    Article  Google Scholar 

  14. Jain, T., Sharma, H., Singh, N., Kushwaha, J.P.: Evaluation of the 2,2′,2″-Nitrilotrisethanol as an entrainer for separation of an Isopropanol + Water Mixture. J. Chem. Eng. Data. 64, 107–114 (2019)

    Article  CAS  Google Scholar 

  15. Pereiro, A., Araújo, J., Esperança, J., Marrucho, I., Rebelo, L.: Ionic liquids in separations of azeotropic systems—a review. J. Chem. Thermodyn. 46, 2–28 (2012)

    Article  CAS  Google Scholar 

  16. Gmehling, J., Mӧllmann, C.: Synthesis of Distillation processes using thermodynamic models and the Dortmund Data Bank. Ind. Eng. Chem. Res. 37, 3112–3123 (1998)

    Article  CAS  Google Scholar 

  17. Arifin, S., Chien, I.-L.: Design and control of an isopropyl alcohol dehydration process via extractive distillation using dimethyl sulfoxide as an entrainer. Ind. Eng. Chem. Res. 27, 790–803 (2008)

    Article  Google Scholar 

  18. McDermott, C., Ellis, S.R.M.: A multicomponent consistency test. Chem. Eng. Sci. 20, 293–296 (1965)

    Article  CAS  Google Scholar 

  19. Wisniak, J., Tamir, A.: Vapour−liquid equilibriums in the ternary systems water−formic acid−acetic acid and water−acetic acid−propionic acid. J. Chem. Eng. Data. 22, 253–260 (1977)

    Article  CAS  Google Scholar 

  20. Sharma, B., Singh, N., Jain, T., Kushwaha, J.P., Singh, P.: Acetonitrile dehydration via extractive distillation using low transition temperature mixtures as entrainer. J. Chem. Eng. Data. 63, 2921–2930 (2018)

    Article  CAS  Google Scholar 

  21. Sharma, B., Singh, N., Jain, T., Kushwaha, J.P.: Ammonium-based deep eutectic solvent as entrainer for separation of acetonitrile–water mixture by extractive distillation. J. Mol. Liq. 285, 185–193 (2019)

    Article  CAS  Google Scholar 

  22. Perry, R.H.: Perrys chemical engineering handbook, 7th edn. McGraw-Hill, New York (1934)

    Google Scholar 

  23. Tsonopoulos, C.: An empirical correlation of second virial coefficient. AIChE J. 20, 263–272 (1974)

    Article  CAS  Google Scholar 

  24. Daubert, T.E., Danner, R.P.: Physical and thermodynamic properties of pure chemicals data compilation. Taylor & Francis, Washington, D.C. (1992)

    Google Scholar 

  25. Kim, I., Svendsen, H.F., Børresen, E.: Ebulliometric determination of vapor-liquid equilibria for pure water, monoethanolamine, N-Methyldiethanolamine, 3-(methylamino)-propylamine, and their binary and ternary solutions. J. Chem. Eng. Data. 53, 2521–2531 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Thapar Institute of Engineering & Technology, Patiala, India, for the financial support to conduct this research under the Grant TU/SEED/2014/CHE/NS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neetu Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kataria, R., Jain, T., Singh, N. et al. Using Diaminomethanal as an Entrainer for the Separation of Isopropanol + Water Mixture. J Solution Chem 49, 133–144 (2020). https://doi.org/10.1007/s10953-020-00946-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-020-00946-8

Keywords

Navigation