Abstract
The phase diagrams for carbamazepine (CBZ) and nicotinamide (NCT) in ethanol and ethanol/ethyl acetate mixture were constructed at 298.15 K and 313.15 K under atmospheric pressure using the static method. The solubility of the 1:1 cocrystal is correlated as a function of the cocrystal former (nicotinamide) concentration by a mathematical model based on solubility product theory and the complexation process. The phase diagram of a CBZ–NCT cocrystal in pure ethanol at 298.15 K is asymmetric, which leads to an excess of coformer being needed to isolate the cocrystal. In terms of this issue, it was found that the solvent mixture can have a significant effect on the symmetry of phase diagrams. Employing solvent mixtures could make the phase diagrams of the CBZ–NCT cocrystal more symmetric and enlarge the safe operation region for the cocrystal. Additionally, in the cocrystal formation process, the nucleation of cocrystal and carbamazepine in a slurry crystallization, is a competitive relationship. For avoiding single component crystallization, the supersaturation ratio of cocrystal to drug should be increased to inhibit carbamazepine nucleation. These findings are all beneficial to the development of the cocrystallization process of the CBZ–NCT cocrystal.
Similar content being viewed by others
References
Childs, S.L., Stahly, G.P., Park, A.: The salt–cocrystal continuum: the influence of crystal structure on ionization state. Mol. Pharm. 4, 323–338 (2007)
Shayanfar, A., Asadpour-Zeynali, K., Jouyban, A.: Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. J. Mol. Liq. 187, 171–176 (2013)
Duggirala, N.K., Smith, A.J., Wojtas, L., Shytle, R.D., Zaworotko, M.J.: Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose. Cryst. Growth Des. 14, 6135–6142 (2014)
Wang, L., Wen, X., Li, P., Wang, J., Yang, P., Zhang, H., Deng, Z.: 2:1 5-fluorocytosine–acesulfame CAB cocrystal and 1:1 5-fluorocytosine–acesulfame salt hydrate with enhanced stability against hydration. CrystEngComm 16, 8537–8545 (2014)
Imchalee, R., Charoenchaitrakool, M.: Gas anti-solvent processing of a new sulfamethoxazole-L-malic acid cocrystal. J. Ind. Eng. Chem. 25, 12–15 (2015)
Aakeroy, C.B., Salmon, D.J., Smith, M.M., Desper, J.: Cyanophenyloximes: reliable and versatile tools for hydrogen-bond directed supramolecular synthesis of cocrystals. Cryst. Growth Des. 6, 1033–1042 (2006)
Yamamoto, K., Tsutsumi, S., Ikeda, Y.: Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int. J. Pharm. 437, 162–171 (2012)
Lee, M.J., Chun, N.H., Wang, I.C., Liu, J.J., Jeong, M.Y., Choi, G.J.: Understanding the formation of indomethacin−saccharin cocrystals by anti-solvent crystallization. Cryst. Growth Des. 13, 2067–2074 (2013)
Chiarella, R.A., Davey, R.J., Peterson, M.L.: Making co-crystals the utility of ternary phase diagrams. Cryst. Growth Des. 7, 1223–1226 (2007)
Childs, S.L., Wood, P.A., Rodríguez-Hornedo, N., Reddy, L.S., Hardcastle, K.I.: Analysis of 50 crystal structures containing carbamazepine using the materials module of Mercury CSD. Cryst. Growth Des. 9, 1869–1888 (2009)
Hickey, M.B., Peterson, M.L., Scoppettuolo, L.A., Morrisette, S.L., Vetter, A., Guzmán, H., Remenar, J.F., Zhang, Z., Tawa, M.D., Haley, S., Zaworotko, M.J., Almarsson, Ö.: Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. Pharm. Biopharm. 67, 112–119 (2007)
Lu, E., Rodríguez-Hornedo, N., Suryanarayanan, R.: A rapid thermal method for cocrystal screening. CrystEngComm 10, 665–668 (2008)
ter Horst, J.H., Deij, M.A., Cains, P.W.: Discovering new co-crystals. Cryst. Growth Des. 9, 1531–1537 (2009)
Vishweshwar, P., McMahon, J.A., Oliveira, M., Peterson, M.L., Zaworotko, M.J.: The predictably elusive form II of aspirin. J. Am. Chem. Soc. 127, 16802–16803 (2005)
Childs, S.L., Rodríguez-Hornedo, N., Reddy, L.S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R., Stahly, B.C.: Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 10, 856–864 (2008)
Majumder, M., Buckton, G., Rawlinson-Malone, C., Williams, A.C., Spillman, M.J., Shankland, N., Shankland, K.: A carbamazepine–indomethacin (1:1) cocrystal produced by milling. CrystEngComm 13, 6327–6328 (2011)
Rahim, S.A., Hammond, R.B., Sheikh, A.Y., Roberts, K.J.: A comparative assessment of the influence of different crystallization screening methodologies on the solid forms of carbamazepine co-crystals. CrystEngComm 15, 3862–3873 (2013)
Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Walsh, R.D.B., Rodríguez-Hornedo, N., Zaworotko, M.J.: Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des. 3, 909–919 (2003)
Nehm, S.J., Rodríguez-Spong, B., Rodríguez-Hornedo, N.: Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 6, 592–600 (2006)
Seefeldt, K., Miller, J., Alvarez-Núñez, F., Rodríguez-Hornedo, N.: Crystallization pathways and kinetics of carbamazepine–nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy and calorimetry studies. J. Pharm. Sci. 96, 1147–1158 (2007)
Buanz, A.B.M., Parkinson, G.N., Gaisford, S.: Characterization of carbamazepine–nicatinamide cocrystal polymorphs with rapid heating DSC and XRPD. Cryst. Growth Des. 11, 1177–1181 (2011)
Huskić, I., Christopherson, J.C., Užarevićin, K., Friščić, T.: In situ monitoring of vapour-induced assembly of pharmaceutical cocrystals using a benchtop powder X-ray diffractometer. Chem. Commun. 52, 5120–5123 (2016)
Soares, F.L.F., Carneiro, R.L.: In-line monitoring of cocrystallization process and quantification of carbamazepine–nicotinamide cocrystal using Raman spectroscopy and chemometric tools. Spectrochim. Acta A. 180, 1–8 (2017)
Li, M., Qiao, N., Wang, K.: Influence of sodium lauryl sulfate and Tween 80 on carbamazepine–nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics 5, 508–524 (2013)
Tong, Y., Wang, Z., Dang, L., Wei, H.: Solid–liquid phase equilibrium and ternary phase diagrams of ethenzamide–saccharin cocrystals in different solvents. Fluid Phase Equilib. 419, 24–30 (2016)
Dragoo, A.L.: Standard reference materials for X-ray diffraction. Part 1. Overview of current and future standard reference methods. Powder Diffract. 1, 294–298 (1986)
Cline, J.: NIST standard reference materials for characterization of instrument performance. In: Chung, F., Smith, D. (eds.) Industrial Applications of X-ray Diffraction. Marcel Dekker, New York, pp. 903–917 (2000)
Lipert, M.P., Rodríguez-Hornedo, N.: Cocrystal transition points: role of cocrystal solubility, drug solubility, and solubilizing agents. Mol. Pharm. 12, 3535–3546 (2015)
Cao, F., Amidon, G.L., Rodriguez-Hornedo, N., Amidon, G.E.: Mechanistic analysis of cocrystal dissolution as a function of pH and micellar solubilization. Mol. Pharm. 13, 1030–1046 (2016)
Rustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M.C., Ficarra, R., Tommasini, S.: Solid-state study of polymorphic drugs: carbamazepine. J. Pharmaceut. Biomed. 23, 41–54 (2000)
Chow, S.F., Chen, M., Shi, L., Chow, A.H.L., Sun, C.C.: Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm. Res. 29, 1854–1865 (2012)
Patil, S.P., Modi, S.R., Bansal, A.K.: Generation of 1:1 carbamazepine: nicotinamide cocrystals by spray drying. Eur. J. Pharm. Sci. 10, 251–257 (2014)
Rahman, Z., Agarabi, C., Zidan, A.S., Khan, S.R., Khan, M.A.: Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 12, 654–704 (2011)
Gao, Y., Gao, J., Liu, Z., Kan, H., Zu, H., Sun, W., Zhang, J., Qian, S.: Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil–saccharin and adefovir dipivoxil–nicotinamide cocrystals. Int. J. Pharm. 438, 327–335 (2012)
Ouyang, J., Zhang, Y., Na, B., Liu, Z., Zhou, L., Hao, H.: Solubility determination of nicotinamide and its application for the cocrystallization with benzoic acid. J. Chem. Eng. Data. 63, 4157–4165 (2018)
Shayanfar, A., Velaga, P., Jouyban, A.: Solubility of carbamazepine, nicotinamide andcarbamazepine–nicotinamide cocrystal in ethanol–water mixtures. Fluid Phase Equilib. 363, 97–105 (2014)
Alhalaweh, A., Sokolowski, A., Rodríguez-Hornedo, N., Velaga, S.P.: Solubility behavior and solution chemistry of indomethacin cocrystals in organic solvents. Cryst. Growth Des. 11, 3923–3929 (2011)
Rodríguez-Hornedo, N., Nehm, S.J., Seefeldt, K.F., Pagán-Torres, Y., Falkiewicz, C.J.: Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharm. 3, 362–367 (2006)
Acknowledgements
The authors are very thankful to the Major National Scientific Instrument Development Project of China (No. 21527812) and Tianjin Municipal Natural Science Foundation (No. 16JCZDJC32700) for the financial support.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Huang, Y., Sun, X., Zhou, L. et al. Investigation of Ternary Phase Diagrams of Carbamazepine–Nicotinamide Cocrystal in Ethanol and Ethanol/Ethyl Acetate Mixtures at 298.15 K and 313.15 K. J Solution Chem 49, 117–132 (2020). https://doi.org/10.1007/s10953-019-00944-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-019-00944-5