Skip to main content

Advertisement

Log in

Investigation of Ternary Phase Diagrams of Carbamazepine–Nicotinamide Cocrystal in Ethanol and Ethanol/Ethyl Acetate Mixtures at 298.15 K and 313.15 K

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The phase diagrams for carbamazepine (CBZ) and nicotinamide (NCT) in ethanol and ethanol/ethyl acetate mixture were constructed at 298.15 K and 313.15 K under atmospheric pressure using the static method. The solubility of the 1:1 cocrystal is correlated as a function of the cocrystal former (nicotinamide) concentration by a mathematical model based on solubility product theory and the complexation process. The phase diagram of a CBZ–NCT cocrystal in pure ethanol at 298.15 K is asymmetric, which leads to an excess of coformer being needed to isolate the cocrystal. In terms of this issue, it was found that the solvent mixture can have a significant effect on the symmetry of phase diagrams. Employing solvent mixtures could make the phase diagrams of the CBZ–NCT cocrystal more symmetric and enlarge the safe operation region for the cocrystal. Additionally, in the cocrystal formation process, the nucleation of cocrystal and carbamazepine in a slurry crystallization, is a competitive relationship. For avoiding single component crystallization, the supersaturation ratio of cocrystal to drug should be increased to inhibit carbamazepine nucleation. These findings are all beneficial to the development of the cocrystallization process of the CBZ–NCT cocrystal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Childs, S.L., Stahly, G.P., Park, A.: The salt–cocrystal continuum: the influence of crystal structure on ionization state. Mol. Pharm. 4, 323–338 (2007)

    Article  CAS  Google Scholar 

  2. Shayanfar, A., Asadpour-Zeynali, K., Jouyban, A.: Solubility and dissolution rate of a carbamazepine–cinnamic acid cocrystal. J. Mol. Liq. 187, 171–176 (2013)

    Article  CAS  Google Scholar 

  3. Duggirala, N.K., Smith, A.J., Wojtas, L., Shytle, R.D., Zaworotko, M.J.: Physical stability enhancement and pharmacokinetics of a lithium ionic cocrystal with glucose. Cryst. Growth Des. 14, 6135–6142 (2014)

    Article  CAS  Google Scholar 

  4. Wang, L., Wen, X., Li, P., Wang, J., Yang, P., Zhang, H., Deng, Z.: 2:1 5-fluorocytosine–acesulfame CAB cocrystal and 1:1 5-fluorocytosine–acesulfame salt hydrate with enhanced stability against hydration. CrystEngComm 16, 8537–8545 (2014)

    Article  CAS  Google Scholar 

  5. Imchalee, R., Charoenchaitrakool, M.: Gas anti-solvent processing of a new sulfamethoxazole-L-malic acid cocrystal. J. Ind. Eng. Chem. 25, 12–15 (2015)

    Article  CAS  Google Scholar 

  6. Aakeroy, C.B., Salmon, D.J., Smith, M.M., Desper, J.: Cyanophenyloximes: reliable and versatile tools for hydrogen-bond directed supramolecular synthesis of cocrystals. Cryst. Growth Des. 6, 1033–1042 (2006)

    Article  CAS  Google Scholar 

  7. Yamamoto, K., Tsutsumi, S., Ikeda, Y.: Establishment of cocrystal cocktail grinding method for rational screening of pharmaceutical cocrystals. Int. J. Pharm. 437, 162–171 (2012)

    Article  CAS  Google Scholar 

  8. Lee, M.J., Chun, N.H., Wang, I.C., Liu, J.J., Jeong, M.Y., Choi, G.J.: Understanding the formation of indomethacin−saccharin cocrystals by anti-solvent crystallization. Cryst. Growth Des. 13, 2067–2074 (2013)

    Article  CAS  Google Scholar 

  9. Chiarella, R.A., Davey, R.J., Peterson, M.L.: Making co-crystals the utility of ternary phase diagrams. Cryst. Growth Des. 7, 1223–1226 (2007)

    Article  CAS  Google Scholar 

  10. Childs, S.L., Wood, P.A., Rodríguez-Hornedo, N., Reddy, L.S., Hardcastle, K.I.: Analysis of 50 crystal structures containing carbamazepine using the materials module of Mercury CSD. Cryst. Growth Des. 9, 1869–1888 (2009)

    Article  CAS  Google Scholar 

  11. Hickey, M.B., Peterson, M.L., Scoppettuolo, L.A., Morrisette, S.L., Vetter, A., Guzmán, H., Remenar, J.F., Zhang, Z., Tawa, M.D., Haley, S., Zaworotko, M.J., Almarsson, Ö.: Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. Pharm. Biopharm. 67, 112–119 (2007)

    Article  CAS  Google Scholar 

  12. Lu, E., Rodríguez-Hornedo, N., Suryanarayanan, R.: A rapid thermal method for cocrystal screening. CrystEngComm 10, 665–668 (2008)

    Article  CAS  Google Scholar 

  13. ter Horst, J.H., Deij, M.A., Cains, P.W.: Discovering new co-crystals. Cryst. Growth Des. 9, 1531–1537 (2009)

    Article  CAS  Google Scholar 

  14. Vishweshwar, P., McMahon, J.A., Oliveira, M., Peterson, M.L., Zaworotko, M.J.: The predictably elusive form II of aspirin. J. Am. Chem. Soc. 127, 16802–16803 (2005)

    Article  CAS  Google Scholar 

  15. Childs, S.L., Rodríguez-Hornedo, N., Reddy, L.S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R., Stahly, B.C.: Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 10, 856–864 (2008)

    Article  CAS  Google Scholar 

  16. Majumder, M., Buckton, G., Rawlinson-Malone, C., Williams, A.C., Spillman, M.J., Shankland, N., Shankland, K.: A carbamazepine–indomethacin (1:1) cocrystal produced by milling. CrystEngComm 13, 6327–6328 (2011)

    Article  CAS  Google Scholar 

  17. Rahim, S.A., Hammond, R.B., Sheikh, A.Y., Roberts, K.J.: A comparative assessment of the influence of different crystallization screening methodologies on the solid forms of carbamazepine co-crystals. CrystEngComm 15, 3862–3873 (2013)

    Article  CAS  Google Scholar 

  18. Fleischman, S.G., Kuduva, S.S., McMahon, J.A., Moulton, B., Walsh, R.D.B., Rodríguez-Hornedo, N., Zaworotko, M.J.: Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des. 3, 909–919 (2003)

    Article  CAS  Google Scholar 

  19. Nehm, S.J., Rodríguez-Spong, B., Rodríguez-Hornedo, N.: Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 6, 592–600 (2006)

    Article  CAS  Google Scholar 

  20. Seefeldt, K., Miller, J., Alvarez-Núñez, F., Rodríguez-Hornedo, N.: Crystallization pathways and kinetics of carbamazepine–nicotinamide cocrystals from the amorphous state by in situ thermomicroscopy, spectroscopy and calorimetry studies. J. Pharm. Sci. 96, 1147–1158 (2007)

    Article  CAS  Google Scholar 

  21. Buanz, A.B.M., Parkinson, G.N., Gaisford, S.: Characterization of carbamazepine–nicatinamide cocrystal polymorphs with rapid heating DSC and XRPD. Cryst. Growth Des. 11, 1177–1181 (2011)

    Article  CAS  Google Scholar 

  22. Huskić, I., Christopherson, J.C., Užarevićin, K., Friščić, T.: In situ monitoring of vapour-induced assembly of pharmaceutical cocrystals using a benchtop powder X-ray diffractometer. Chem. Commun. 52, 5120–5123 (2016)

    Article  CAS  Google Scholar 

  23. Soares, F.L.F., Carneiro, R.L.: In-line monitoring of cocrystallization process and quantification of carbamazepine–nicotinamide cocrystal using Raman spectroscopy and chemometric tools. Spectrochim. Acta A. 180, 1–8 (2017)

    Article  CAS  Google Scholar 

  24. Li, M., Qiao, N., Wang, K.: Influence of sodium lauryl sulfate and Tween 80 on carbamazepine–nicotinamide cocrystal solubility and dissolution behaviour. Pharmaceutics 5, 508–524 (2013)

    Article  CAS  Google Scholar 

  25. Tong, Y., Wang, Z., Dang, L., Wei, H.: Solid–liquid phase equilibrium and ternary phase diagrams of ethenzamide–saccharin cocrystals in different solvents. Fluid Phase Equilib. 419, 24–30 (2016)

    Article  CAS  Google Scholar 

  26. Dragoo, A.L.: Standard reference materials for X-ray diffraction. Part 1. Overview of current and future standard reference methods. Powder Diffract. 1, 294–298 (1986)

    Article  CAS  Google Scholar 

  27. Cline, J.: NIST standard reference materials for characterization of instrument performance. In: Chung, F., Smith, D. (eds.) Industrial Applications of X-ray Diffraction. Marcel Dekker, New York, pp. 903–917 (2000)

    Google Scholar 

  28. Lipert, M.P., Rodríguez-Hornedo, N.: Cocrystal transition points: role of cocrystal solubility, drug solubility, and solubilizing agents. Mol. Pharm. 12, 3535–3546 (2015)

    Article  CAS  Google Scholar 

  29. Cao, F., Amidon, G.L., Rodriguez-Hornedo, N., Amidon, G.E.: Mechanistic analysis of cocrystal dissolution as a function of pH and micellar solubilization. Mol. Pharm. 13, 1030–1046 (2016)

    Article  CAS  Google Scholar 

  30. Rustichelli, C., Gamberini, G., Ferioli, V., Gamberini, M.C., Ficarra, R., Tommasini, S.: Solid-state study of polymorphic drugs: carbamazepine. J. Pharmaceut. Biomed. 23, 41–54 (2000)

    Article  CAS  Google Scholar 

  31. Chow, S.F., Chen, M., Shi, L., Chow, A.H.L., Sun, C.C.: Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharm. Res. 29, 1854–1865 (2012)

    Article  CAS  Google Scholar 

  32. Patil, S.P., Modi, S.R., Bansal, A.K.: Generation of 1:1 carbamazepine: nicotinamide cocrystals by spray drying. Eur. J. Pharm. Sci. 10, 251–257 (2014)

    Article  CAS  Google Scholar 

  33. Rahman, Z., Agarabi, C., Zidan, A.S., Khan, S.R., Khan, M.A.: Physico-mechanical and stability evaluation of carbamazepine cocrystal with nicotinamide. AAPS PharmSciTech. 12, 654–704 (2011)

    Article  CAS  Google Scholar 

  34. Gao, Y., Gao, J., Liu, Z., Kan, H., Zu, H., Sun, W., Zhang, J., Qian, S.: Coformer selection based on degradation pathway of drugs: a case study of adefovir dipivoxil–saccharin and adefovir dipivoxil–nicotinamide cocrystals. Int. J. Pharm. 438, 327–335 (2012)

    Article  CAS  Google Scholar 

  35. Ouyang, J., Zhang, Y., Na, B., Liu, Z., Zhou, L., Hao, H.: Solubility determination of nicotinamide and its application for the cocrystallization with benzoic acid. J. Chem. Eng. Data. 63, 4157–4165 (2018)

    Article  CAS  Google Scholar 

  36. Shayanfar, A., Velaga, P., Jouyban, A.: Solubility of carbamazepine, nicotinamide andcarbamazepine–nicotinamide cocrystal in ethanol–water mixtures. Fluid Phase Equilib. 363, 97–105 (2014)

    Article  CAS  Google Scholar 

  37. Alhalaweh, A., Sokolowski, A., Rodríguez-Hornedo, N., Velaga, S.P.: Solubility behavior and solution chemistry of indomethacin cocrystals in organic solvents. Cryst. Growth Des. 11, 3923–3929 (2011)

    Article  CAS  Google Scholar 

  38. Rodríguez-Hornedo, N., Nehm, S.J., Seefeldt, K.F., Pagán-Torres, Y., Falkiewicz, C.J.: Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharm. 3, 362–367 (2006)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very thankful to the Major National Scientific Instrument Development Project of China (No. 21527812) and Tianjin Municipal Natural Science Foundation (No. 16JCZDJC32700) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuxiang Yin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 88 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Y., Sun, X., Zhou, L. et al. Investigation of Ternary Phase Diagrams of Carbamazepine–Nicotinamide Cocrystal in Ethanol and Ethanol/Ethyl Acetate Mixtures at 298.15 K and 313.15 K. J Solution Chem 49, 117–132 (2020). https://doi.org/10.1007/s10953-019-00944-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00944-5

Keywords

Navigation