Skip to main content
Log in

Micellization of Ionic Liquid Surfactants Induced by Sodium Polystyrenesulfonate in Aqueous Solutions

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

The aggregation phenomena of two ionic liquid surfactants—1-decyl-3-methylimidazolium chloride (C10MeImCl) and 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl) have been investigated in aqueous solutions in the presence of a polyelectrolyte, sodium polystyrenesulfonate (NaPSS), using electrical conductivity, surface tension, fluorescence and vapor pressure measurements. The counterion-condensation behavior of aqueous NaPSS has also been studied and approximately 62% of the counterions have been found to remain uncondensed in these solutions. The characteristic concentrations signifying different kinds of interactions, namely the critical aggregation concentration and the polymer saturation concentration, in the premicellar regime have been identified. Surface-active complexes with bound surfactant monomers onto the polyion backbone, non-surface active aggregates with small micellar units wrapped by polyion chains, and non-surface active micelles of ionic liquid surfactant monomers, were found to form in aqueous ionic liquid surfactant solutions in the presence of NaPSS. The surfactant concentration where polyelectrolyte–surfactant monomer complexes begin to form (cac), the concentration where the polyion chains get saturated with the small micellar units (psc), and the concentration where micelles of ionic liquid surfactant molecules begin to appear (cmc*) were identified in aqueous C16MeImCl solutions in the presence of NaPSS. Only two critical concentrations, namely the psc, and cmc* were, however, detected in aqueous C10MeImCl solutions in the presence of NaPSS. Effects of alkyl chain length of the ionic liquid surfactants, temperature, NaPSS concentration, and the charge parameter of NaPSS on the self-aggregation of the ionic liquid surfactants have been considered to elucidate the interactions in these mixed systems. The thermodynamics of micellization in these systems have also been studied and the spontaneity of the polyelectrolyte-induced micellization processes have been rationalized for the systems investigated, with the entropy terms superseding the enthalpy terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kumar, D., Hidayathulla, S., Rub, M.A.: Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt. J. Mol. Liq. 271, 254–264 (2018)

    CAS  Google Scholar 

  2. Azum, N., Rub, M.A., Asiri, A.M.: Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions. J. Solution Chem. 45, 791–803 (2016)

    CAS  Google Scholar 

  3. Kumar, D., Rub, M.A.: Studies of interaction between ninhydrin and Gly-Leu dipeptide: influence of cationic surfactants (m-s-m type gemini). J. Mol. Liq. 269, 1–7 (2018)

    CAS  Google Scholar 

  4. Rub, M.A., Azum, M., Khan, F., Asiri, A.A.: Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: a tensiometry and fluorometry Study. J. Chem. Thermodyn. 121, 199–210 (2018)

    Google Scholar 

  5. Rahaman, M., Khan, M.A., Rub, M.A., Hoque, M.A., Asiri, A.A.: Investigation of the effect of various additives on the clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate in absence and presence of ceftriaxone sodium trihydrate drug. J. Chem. Eng. Data 62, 1464–1474 (2017)

    Google Scholar 

  6. Hoque, M.A., Patoary, M.-O.-K., Rashid, M.M., Molla, M.R., Rub, M.A.: Physico-chemical investigation of mixed micelle formation between tetradecyltrimethyl-ammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride. J. Solution Chem. 46, 682–703 (2017)

    CAS  Google Scholar 

  7. Goddard, E.D.: Polymer/surfactant interaction: interfacial aspects. J. Colloid Interface Sci. 256, 228–235 (2001)

    Google Scholar 

  8. Kogez, K.: Association and structure formation in oppositely charged polyelectrolyte–surfactant mixtures. Adv. Colloid Interface Sci. 158, 68–83 (2010)

    Google Scholar 

  9. Kurawaki, J., Hayakawa, K.: Polyelectrolyte–surfactant interactions. In: Tripathy, S.K., Kumar, J., Nalwa, H.S. (eds.) Handbook of Polyelectrolytes and Their Applications, vol. 2. American Scientific Publishers, Stevenson Ranch (2002)

    Google Scholar 

  10. Nylander, T., Samoshina, Y., Lindman, B.: Formation of polyelectrolyte–surfactant complexes on surfaces. Adv. Colloid Interface Sci. 123–126, 105–123 (2006)

    PubMed  Google Scholar 

  11. Taylor, D.J.F., Thomas, R.K., Li, P.X., Penfold, J.: Adsorption of oppositely charged polyelectrolyte/surfactant mixtures. Neutron reflection from alkyl trimethylammonium bromides and sodium poly(styrenesulfonate) at the air/water interface: The effect of surfactant chain length. Langmuir 19, 3712–3719 (2003)

    CAS  Google Scholar 

  12. Jönsson, B., Lindman, B., Holmberg, K., Kronberg, B.: Surfactants and Polymers in Aqueous Solution. Wiley, London (1998)

    Google Scholar 

  13. Kwak, J.C.T.: Polymersurfactant systems. In: Surfactant Science Series, vol. 77. Marcel Dekker, New York (1998)

    Google Scholar 

  14. Lindman, B., Thalberg, K. In: Goddard, E.D., Ananthapadmanabhan, K.P. (eds.) Interaction of Surfactants with Polymers and Proteins, Chap. 5. CRC Press, Boca Raton (1993)

  15. Anderson, J.L., Pino, V., Hagberg, E.C., Sheares, V.V., Armstrong, D.W.: Surfactant solvation effects and micelle formation in ionic liquids. Chem. Comm. 7(19), 2444–2445 (2003)

    Google Scholar 

  16. Ao, M., Huang, P., Xu, G., Yang, X., Wang, Y.: Aggregation and thermodynamic properties of ionic liquid type gemini imidazolium surfactants with different spacer length. Colloid Polym. Sci. 287, 395–402 (2009)

    CAS  Google Scholar 

  17. Blesic, M., Marques, M., Plechkova, N.V., Seddon, K.R., Rebelo, L.P.N., Lopes, A.: Self-aggregation of ionic liquids: micellle formation in aqueous solution. Green Chem. 9, 481–490 (2007)

    CAS  Google Scholar 

  18. Cornellas, A., Perez, L., Comelles, F., Robosa, I., Manresa, A., Garcia, M.T.: Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid. Interface Sci. 355, 164–171 (2011)

    CAS  PubMed  Google Scholar 

  19. Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related to cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010)

    CAS  PubMed  Google Scholar 

  20. Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007)

    CAS  PubMed  Google Scholar 

  21. Luczak, J., Hupka, J., Thoming, J., Jungnickel, C.: Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf. A: Physicochem. Eng. Aspects 329, 125–133 (2008)

    CAS  Google Scholar 

  22. Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)

    CAS  PubMed  Google Scholar 

  23. Vanyúr, R., Biczók, L., Miskolczy, Z.: Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloid Surf. A: Physicochem. Eng. Aspects. 299, 256–261 (2007)

    Google Scholar 

  24. Das, B., Ray, D., De, R.: Influence of sodium carboxymethylcellulose on the aggregation behavior of aqueous 1-hexadecyl-3-methylimidazolium chloride solutions. Carbohydr. Polym. 113, 208–216 (2014)

    CAS  PubMed  Google Scholar 

  25. Ray, D., Das, S., De, R., Das, B.: Sodium carboxymethylcellulose-induced aggregation of 1-decyl-3-methylimidazolium chloride in aqueous solutions. Carbohydr. Polym. 125, 255–264 (2015)

    CAS  PubMed  Google Scholar 

  26. Barhoumi, Z., Saini, M., Amdouni, N., Pal, A.: Interaction between amphiphillic ionic liquid 1-butyl-3-methylimidazoliumoctyl sulfate and anionic polymer of sodium polystyrene sulfonate. Mor. J. Chem. 4, 911–919 (2016)

    CAS  Google Scholar 

  27. Pal, A., Yadav, S.: Binding interaction between 1-octyl-3-methylimidazolium bromide and sodium polystyrene sulfonate in aqueous solution. Fluid Phase Equilib. 412, 71–78 (2016)

    CAS  Google Scholar 

  28. Barhoumi, Z., Saini, M., Amdouni, N., Pal, A.: Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium. Chem. Phys. Lett. 661, 173–178 (2016)

    CAS  Google Scholar 

  29. Sharma, R., Kamal, A., Kang, T.S., Mahajan, R.K.: Interactional behavior of the polyelectrolyte poly sodium 4-styrenesulphonate (Napss) with imidazolium based surface active ionic liquids in an aqueous medium. Phys. Chem. Chem. Phys. 17, 23582–23594 (2015)

    CAS  PubMed  Google Scholar 

  30. Liu, J., Zhang, Q., Huo, Y., Zhao, M., Sun, D., Wei, X., Liu, S., Zheng, L.: Interactions of two homologues of cationic surface active ionic liquids with sodium carboxymethylcellulose in aqueous solution. Colloid Polym. Sci. 290, 1721–1730 (2012)

    CAS  Google Scholar 

  31. Garcia, M.T., Ribosa, I., Perez, L., Manresa, A., Comelles, F.: Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf. B: Biointerfaces 123, 318–325 (2014)

    CAS  PubMed  Google Scholar 

  32. Wang, H., Wang, Y.: Studies on interaction of poly(sodium acrylate) and poly(sodium styrenesulfonate) with cationic surfactants: effects of polyelectrolyte molar mass, chain flexibility, and surfactant architecture. J. Phys. Chem. B 114, 10409–10416 (2010)

    CAS  PubMed  Google Scholar 

  33. De, R., Ray, D., Das, B.: Influence of temperature, added electrolyte, and polymer molecular weight on the counterion condensation phenomenon in aqueous solution of sodium polystyrenesulfonate: a scaling theory approach. RSC Adv. 5, 54890–54898 (2015)

    CAS  Google Scholar 

  34. Jungnickel, C., Luczak, J., Ranke, J., Fernandez, J.F., Muller, A., Thoming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf. A 316, 278–284 (2008)

    CAS  Google Scholar 

  35. Luczak, J., Jungnickel, C., Joskowska, M., Thoming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)

    CAS  PubMed  Google Scholar 

  36. Luczak, J., Jungnickel, C., Lacka, I., Stolte, S., Hupka, J.: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 12, 593–601 (2010)

    CAS  Google Scholar 

  37. Luczak, J., Markiewicz, M., Thoming, J., Hupka, J., Jungnickel, C.: Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions. J. Colloid Interface Sci. 362, 415–422 (2011)

    CAS  PubMed  Google Scholar 

  38. Sastry, N.V., Vaghela, N.M., Aswal, V.K.: Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib. 327, 22–29 (2012)

    CAS  Google Scholar 

  39. Lind Jr., J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)

    CAS  Google Scholar 

  40. Colby, R.H., Boris, D.C., Krause, W.E., Tan, J.S.: Polyelectrolyte conductivity. J. Polym. Sci. Part B: Polym. Phys. Edn. 35, 2951–2960 (1997)

    CAS  Google Scholar 

  41. Ray, D., De, R., Das, B.: Thermodynamic, transport and frictional properties in semidilute aqueous sodium carboxymethylcellulose solution. J. Chem. Thermodyn. 101, 227–235 (2016)

    CAS  Google Scholar 

  42. Asnacios, A., Klitzing, R., Langevin, D.: Mixed monolayers of polyelectrolytes and surfactants at the air–water interface. Colloid Surf. A 167, 189–197 (2000)

    CAS  Google Scholar 

  43. Kogez, K., Skerjanc, J.: Fluorescence and conductivity studies of polyelectrolyte-induced aggregation of alkyltrimethylammonium bromides. Langmuir 15, 4251–4258 (1999)

    Google Scholar 

  44. Anghel, D.F., Mihai, D.M., Stinga, G., Iovescu, A., Baran, A., Klitzing, R.V.: A study upon interaction of dodecylpyridinium chloride with sodium dextransulfate. Rev. Roum. Chim. 52, 781–787 (2007)

    CAS  Google Scholar 

  45. Chakraborty, T., Chakraborty, I., Ghosh, S.: Sodium carboxymethylcellulose–CTAB interaction: a wqdetailed thermodynamic study of polymer–surfactant interaction with opposite charges. Langmuir 22, 9905–9913 (2006)

    CAS  PubMed  Google Scholar 

  46. Gunnarsson, G., Jönsson, J., Wennerström, H.: Surfactant association into micelles. An electrostatic approach. J. Phys. Chem. 84, 3114–3121 (1980)

    CAS  Google Scholar 

  47. Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)

    CAS  Google Scholar 

  48. Sulthana, S.B., Bhat, S.G.T., Rakshit, A.K.: Studies of the effect of additives on the surface and thermodynamic properties of poly(oxyethylene(10)) laurylether in aqueous solution. Langmuir 13, 4562–4568 (1997)

    CAS  Google Scholar 

  49. Shaw, D.J.: Introduction to Colloid and Surface Chemistry, 2nd edn. Butterworths, London (1978)

    Google Scholar 

  50. Rosen, M.J.: Surfactants and Interfacial Phenomena, 2nd edn. Wiley, New York (1989)

    Google Scholar 

  51. Marrignan, J., Basserau, P., Delord, F.: Effect of pentanol and concentration on the micelles in the system OBS/water/N-pentanol. J. Phys. Chem. 90, 645–652 (1986)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support by the Presidency University under Faculty Research & Professional Development Fund (2018–2019).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijan Das.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOC 660 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ray, D., Das, B. Micellization of Ionic Liquid Surfactants Induced by Sodium Polystyrenesulfonate in Aqueous Solutions. J Solution Chem 48, 1576–1590 (2019). https://doi.org/10.1007/s10953-019-00929-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00929-4

Keywords

Navigation