Abstract
The aggregation phenomena of two ionic liquid surfactants—1-decyl-3-methylimidazolium chloride (C10MeImCl) and 1-hexadecyl-3-methylimidazolium chloride (C16MeImCl) have been investigated in aqueous solutions in the presence of a polyelectrolyte, sodium polystyrenesulfonate (NaPSS), using electrical conductivity, surface tension, fluorescence and vapor pressure measurements. The counterion-condensation behavior of aqueous NaPSS has also been studied and approximately 62% of the counterions have been found to remain uncondensed in these solutions. The characteristic concentrations signifying different kinds of interactions, namely the critical aggregation concentration and the polymer saturation concentration, in the premicellar regime have been identified. Surface-active complexes with bound surfactant monomers onto the polyion backbone, non-surface active aggregates with small micellar units wrapped by polyion chains, and non-surface active micelles of ionic liquid surfactant monomers, were found to form in aqueous ionic liquid surfactant solutions in the presence of NaPSS. The surfactant concentration where polyelectrolyte–surfactant monomer complexes begin to form (cac), the concentration where the polyion chains get saturated with the small micellar units (psc), and the concentration where micelles of ionic liquid surfactant molecules begin to appear (cmc*) were identified in aqueous C16MeImCl solutions in the presence of NaPSS. Only two critical concentrations, namely the psc, and cmc* were, however, detected in aqueous C10MeImCl solutions in the presence of NaPSS. Effects of alkyl chain length of the ionic liquid surfactants, temperature, NaPSS concentration, and the charge parameter of NaPSS on the self-aggregation of the ionic liquid surfactants have been considered to elucidate the interactions in these mixed systems. The thermodynamics of micellization in these systems have also been studied and the spontaneity of the polyelectrolyte-induced micellization processes have been rationalized for the systems investigated, with the entropy terms superseding the enthalpy terms.
Similar content being viewed by others
References
Kumar, D., Hidayathulla, S., Rub, M.A.: Association behavior of a mixed system of the antidepressant drug imipramine hydrochloride and dioctyl sulfosuccinate sodium salt: effect of temperature and salt. J. Mol. Liq. 271, 254–264 (2018)
Azum, N., Rub, M.A., Asiri, A.M.: Micellization and interfacial behavior of the sodium salt of ibuprofen–BRIJ-58 in aqueous/brine solutions. J. Solution Chem. 45, 791–803 (2016)
Kumar, D., Rub, M.A.: Studies of interaction between ninhydrin and Gly-Leu dipeptide: influence of cationic surfactants (m-s-m type gemini). J. Mol. Liq. 269, 1–7 (2018)
Rub, M.A., Azum, M., Khan, F., Asiri, A.A.: Aggregation of sodium salt of ibuprofen and sodium taurocholate mixture in different media: a tensiometry and fluorometry Study. J. Chem. Thermodyn. 121, 199–210 (2018)
Rahaman, M., Khan, M.A., Rub, M.A., Hoque, M.A., Asiri, A.A.: Investigation of the effect of various additives on the clouding behavior and thermodynamics of polyoxyethylene (20) sorbitan monooleate in absence and presence of ceftriaxone sodium trihydrate drug. J. Chem. Eng. Data 62, 1464–1474 (2017)
Hoque, M.A., Patoary, M.-O.-K., Rashid, M.M., Molla, M.R., Rub, M.A.: Physico-chemical investigation of mixed micelle formation between tetradecyltrimethyl-ammonium bromide and dodecyltrimethylammonium chloride in water and aqueous solutions of sodium chloride. J. Solution Chem. 46, 682–703 (2017)
Goddard, E.D.: Polymer/surfactant interaction: interfacial aspects. J. Colloid Interface Sci. 256, 228–235 (2001)
Kogez, K.: Association and structure formation in oppositely charged polyelectrolyte–surfactant mixtures. Adv. Colloid Interface Sci. 158, 68–83 (2010)
Kurawaki, J., Hayakawa, K.: Polyelectrolyte–surfactant interactions. In: Tripathy, S.K., Kumar, J., Nalwa, H.S. (eds.) Handbook of Polyelectrolytes and Their Applications, vol. 2. American Scientific Publishers, Stevenson Ranch (2002)
Nylander, T., Samoshina, Y., Lindman, B.: Formation of polyelectrolyte–surfactant complexes on surfaces. Adv. Colloid Interface Sci. 123–126, 105–123 (2006)
Taylor, D.J.F., Thomas, R.K., Li, P.X., Penfold, J.: Adsorption of oppositely charged polyelectrolyte/surfactant mixtures. Neutron reflection from alkyl trimethylammonium bromides and sodium poly(styrenesulfonate) at the air/water interface: The effect of surfactant chain length. Langmuir 19, 3712–3719 (2003)
Jönsson, B., Lindman, B., Holmberg, K., Kronberg, B.: Surfactants and Polymers in Aqueous Solution. Wiley, London (1998)
Kwak, J.C.T.: Polymersurfactant systems. In: Surfactant Science Series, vol. 77. Marcel Dekker, New York (1998)
Lindman, B., Thalberg, K. In: Goddard, E.D., Ananthapadmanabhan, K.P. (eds.) Interaction of Surfactants with Polymers and Proteins, Chap. 5. CRC Press, Boca Raton (1993)
Anderson, J.L., Pino, V., Hagberg, E.C., Sheares, V.V., Armstrong, D.W.: Surfactant solvation effects and micelle formation in ionic liquids. Chem. Comm. 7(19), 2444–2445 (2003)
Ao, M., Huang, P., Xu, G., Yang, X., Wang, Y.: Aggregation and thermodynamic properties of ionic liquid type gemini imidazolium surfactants with different spacer length. Colloid Polym. Sci. 287, 395–402 (2009)
Blesic, M., Marques, M., Plechkova, N.V., Seddon, K.R., Rebelo, L.P.N., Lopes, A.: Self-aggregation of ionic liquids: micellle formation in aqueous solution. Green Chem. 9, 481–490 (2007)
Cornellas, A., Perez, L., Comelles, F., Robosa, I., Manresa, A., Garcia, M.T.: Self-aggregation and antimicrobial activity of imidazolium and pyridinium based ionic liquids in aqueous solution. J. Colloid. Interface Sci. 355, 164–171 (2011)
Galgano, P.D., El Seoud, O.A.: Micellar properties of surface active ionic liquids: a comparison of 1-hexadecyl-3-methylimidazolium chloride with structurally related to cationic surfactants. J. Colloid Interface Sci. 345, 1–11 (2010)
Inoue, T., Ebina, H., Dong, B., Zheng, L.: Electrical conductivity study on micelle formation of long-chain imidazolium ionic liquids in aqueous solution. J. Colloid Interface Sci. 314, 236–241 (2007)
Luczak, J., Hupka, J., Thoming, J., Jungnickel, C.: Self-organization of imidazolium ionic liquids in aqueous solution. Colloids Surf. A: Physicochem. Eng. Aspects 329, 125–133 (2008)
Singh, T., Kumar, A.: Aggregation behavior of ionic liquids in aqueous solutions: effect of alkyl chain length, cations, and anions. J. Phys. Chem. B 111, 7843–7851 (2007)
Vanyúr, R., Biczók, L., Miskolczy, Z.: Micelle formation of 1-alkyl-3-methylimidazolium bromide ionic liquids in aqueous solution. Colloid Surf. A: Physicochem. Eng. Aspects. 299, 256–261 (2007)
Das, B., Ray, D., De, R.: Influence of sodium carboxymethylcellulose on the aggregation behavior of aqueous 1-hexadecyl-3-methylimidazolium chloride solutions. Carbohydr. Polym. 113, 208–216 (2014)
Ray, D., Das, S., De, R., Das, B.: Sodium carboxymethylcellulose-induced aggregation of 1-decyl-3-methylimidazolium chloride in aqueous solutions. Carbohydr. Polym. 125, 255–264 (2015)
Barhoumi, Z., Saini, M., Amdouni, N., Pal, A.: Interaction between amphiphillic ionic liquid 1-butyl-3-methylimidazoliumoctyl sulfate and anionic polymer of sodium polystyrene sulfonate. Mor. J. Chem. 4, 911–919 (2016)
Pal, A., Yadav, S.: Binding interaction between 1-octyl-3-methylimidazolium bromide and sodium polystyrene sulfonate in aqueous solution. Fluid Phase Equilib. 412, 71–78 (2016)
Barhoumi, Z., Saini, M., Amdouni, N., Pal, A.: Interaction between amphiphilic ionic liquid 1-butyl-3-methylimidazolium octyl sulfate and anionic polymer of sodium polystyrene sulfonate in aqueous medium. Chem. Phys. Lett. 661, 173–178 (2016)
Sharma, R., Kamal, A., Kang, T.S., Mahajan, R.K.: Interactional behavior of the polyelectrolyte poly sodium 4-styrenesulphonate (Napss) with imidazolium based surface active ionic liquids in an aqueous medium. Phys. Chem. Chem. Phys. 17, 23582–23594 (2015)
Liu, J., Zhang, Q., Huo, Y., Zhao, M., Sun, D., Wei, X., Liu, S., Zheng, L.: Interactions of two homologues of cationic surface active ionic liquids with sodium carboxymethylcellulose in aqueous solution. Colloid Polym. Sci. 290, 1721–1730 (2012)
Garcia, M.T., Ribosa, I., Perez, L., Manresa, A., Comelles, F.: Self-assembly and antimicrobial activity of long-chain amide-functionalized ionic liquids in aqueous solution. Colloids Surf. B: Biointerfaces 123, 318–325 (2014)
Wang, H., Wang, Y.: Studies on interaction of poly(sodium acrylate) and poly(sodium styrenesulfonate) with cationic surfactants: effects of polyelectrolyte molar mass, chain flexibility, and surfactant architecture. J. Phys. Chem. B 114, 10409–10416 (2010)
De, R., Ray, D., Das, B.: Influence of temperature, added electrolyte, and polymer molecular weight on the counterion condensation phenomenon in aqueous solution of sodium polystyrenesulfonate: a scaling theory approach. RSC Adv. 5, 54890–54898 (2015)
Jungnickel, C., Luczak, J., Ranke, J., Fernandez, J.F., Muller, A., Thoming, J.: Micelle formation of imidazolium ionic liquids in aqueous solution. Colloids Surf. A 316, 278–284 (2008)
Luczak, J., Jungnickel, C., Joskowska, M., Thoming, J., Hupka, J.: Thermodynamics of micellization of imidazolium ionic liquids in aqueous solutions. J. Colloid Interface Sci. 336, 111–116 (2009)
Luczak, J., Jungnickel, C., Lacka, I., Stolte, S., Hupka, J.: Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives. Green Chem. 12, 593–601 (2010)
Luczak, J., Markiewicz, M., Thoming, J., Hupka, J., Jungnickel, C.: Influence of the Hofmeister anions on self-organization of 1-decyl-3-methylimidazolium chloride in aqueous solutions. J. Colloid Interface Sci. 362, 415–422 (2011)
Sastry, N.V., Vaghela, N.M., Aswal, V.K.: Effect of alkyl chain length and head group on surface active and aggregation behavior of ionic liquids in water. Fluid Phase Equilib. 327, 22–29 (2012)
Lind Jr., J.E., Zwolenik, J.J., Fuoss, R.M.: Calibration of conductance cells at 25° with aqueous solutions of potassium chloride. J. Am. Chem. Soc. 81, 1557–1559 (1959)
Colby, R.H., Boris, D.C., Krause, W.E., Tan, J.S.: Polyelectrolyte conductivity. J. Polym. Sci. Part B: Polym. Phys. Edn. 35, 2951–2960 (1997)
Ray, D., De, R., Das, B.: Thermodynamic, transport and frictional properties in semidilute aqueous sodium carboxymethylcellulose solution. J. Chem. Thermodyn. 101, 227–235 (2016)
Asnacios, A., Klitzing, R., Langevin, D.: Mixed monolayers of polyelectrolytes and surfactants at the air–water interface. Colloid Surf. A 167, 189–197 (2000)
Kogez, K., Skerjanc, J.: Fluorescence and conductivity studies of polyelectrolyte-induced aggregation of alkyltrimethylammonium bromides. Langmuir 15, 4251–4258 (1999)
Anghel, D.F., Mihai, D.M., Stinga, G., Iovescu, A., Baran, A., Klitzing, R.V.: A study upon interaction of dodecylpyridinium chloride with sodium dextransulfate. Rev. Roum. Chim. 52, 781–787 (2007)
Chakraborty, T., Chakraborty, I., Ghosh, S.: Sodium carboxymethylcellulose–CTAB interaction: a wqdetailed thermodynamic study of polymer–surfactant interaction with opposite charges. Langmuir 22, 9905–9913 (2006)
Gunnarsson, G., Jönsson, J., Wennerström, H.: Surfactant association into micelles. An electrostatic approach. J. Phys. Chem. 84, 3114–3121 (1980)
Das, C., Das, B.: Thermodynamic and interfacial adsorption studies on the micellar solutions of alkyltrimethylammonium bromides in ethylene glycol (1) + water (2) mixed solvent media. J. Chem. Eng. Data 54, 559–565 (2009)
Sulthana, S.B., Bhat, S.G.T., Rakshit, A.K.: Studies of the effect of additives on the surface and thermodynamic properties of poly(oxyethylene(10)) laurylether in aqueous solution. Langmuir 13, 4562–4568 (1997)
Shaw, D.J.: Introduction to Colloid and Surface Chemistry, 2nd edn. Butterworths, London (1978)
Rosen, M.J.: Surfactants and Interfacial Phenomena, 2nd edn. Wiley, New York (1989)
Marrignan, J., Basserau, P., Delord, F.: Effect of pentanol and concentration on the micelles in the system OBS/water/N-pentanol. J. Phys. Chem. 90, 645–652 (1986)
Acknowledgements
The authors acknowledge the financial support by the Presidency University under Faculty Research & Professional Development Fund (2018–2019).
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Ray, D., Das, B. Micellization of Ionic Liquid Surfactants Induced by Sodium Polystyrenesulfonate in Aqueous Solutions. J Solution Chem 48, 1576–1590 (2019). https://doi.org/10.1007/s10953-019-00929-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10953-019-00929-4