Skip to main content
Log in

Thermodynamic Study on the Interaction of Nicotinic Acid with H+, Na+, Ca2+ and Mg2+ at Different Temperatures and Ionic Strengths

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

Protonation of nicotinic acid has been investigated by means of potentiometric titrations at different temperatures 283.15 ≤ T (K) ≤ 383.15 and ionic strengths of NaCl(aq), 0.12 ≤ I (mol·kg−1) ≤ 4.84 and mixed NaCl with MgCl2 or CaCl2. Stability constants of the CaL+ and MgL+ species were obtained by means of the ΔpK method. Different models (e.g. Debye–Hückel type equation, Specific Ion Interaction Theory, Pitzer and van’t Hoff) were applied to account for the ionic strength and temperature dependences, in order to obtain data in a standard state and parameters to calculate stability constants in any point of our experimental domain. Speciation studies were performed simulating the conditions of natural fluids. Literature data were investigated for comparison with the experimental results here obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

p :

Pressure

I :

Ionic strength

T :

Temperature in Kelvin degrees

u :

Uncertainty

L :

Deprotonated ligand

log10 γ:

Logarithm of the activity coefficient

C i :

Ionic strength dependence parameter for the ith protonation step in the EDH equation

k m :

Setschenow coefficient, salt coefficient

εik :

Specific interaction coefficient of the species i with the species k

A :

Constant of the Debye–Hückel equation, dependent on temperature

θ :

Term of the Pitzer equation accounting for binary interactions of ions of same sign but different charge interactions

ψ :

Term of the Pitzer equation accounting for the triple interactions

H 0)0 :

Standard protonation enthalpy at infinite dilution

τ :

Reference temperature, 298.15 K in our case

log10K M :

Logarithm of the stability constant of the ML species, superscript “0” indicates infinite dilution

c 0 and c 1 :

Ionic strength dependence parameters of the weak interaction model

References

  1. Xu, X.J., Jiang, G.S.: Niacin-respondent subset of schizophrenia—a therapeutic review Eur. Rev. Med. Pharmacol. Sci. 19, 988–997 (2015)

    CAS  Google Scholar 

  2. Kirkland, J.B., Meyer-Ficca, M.L.: Niacin. In: Eskin, N.A.M. (ed.) Advances in Food and Nutrition Research, vol. 83, pp. 83–149. Academic Press, New York (2018)

    Google Scholar 

  3. Gaynon, M.W., Paulus, Y.M., Rahimy, E., Alexander, J.L., Mansour, S.E.: Effect of oral niacin on central retinal vein occlusion Graefes. Arch. Clin. Exp. Ophthalmol. 255, 1085–1092 (2017)

    CAS  Google Scholar 

  4. Wakade, C., Giri, B., Malik, A., Khodadadi, H., Morgan, J.C., Chong, R.K., Baban, B.: Niacin modulates macrophage polarization in Parkinson’s disease. J. Neuroimmunol. 320, 76–79 (2018)

    CAS  PubMed  Google Scholar 

  5. Abdul Rahim, S., Hussain, S., Farooqui, M.: Binary complexes of nicotinic acid with transition metal ions in aqueous medium. Int. J. Chem. Sci. 12, 1299–1304 (2014)

    CAS  Google Scholar 

  6. Hernowo, E., Angkawijaya, A.E., Fazary, A.E., Ismadji, S., Ju, Y.H.: Complex stability and molecular structure studies of divalent metal ion with l-norleucine and vitamin B3. J. Chem. Eng. Data 56, 4549–4555 (2011)

    CAS  Google Scholar 

  7. Hussain, S., Abdul Rahim, S., Farooqui, M.: Studies of binary complexes of bivalent metal ions with nicotinic acid by potentiometry. J. Adv. Sci. Res. 3, 68–69 (2012)

    CAS  Google Scholar 

  8. Patil, A.B.: Potentiometric studies of ternary complexes of some transition metal(II) ions with nitrilotriacetic acid and iminodiacetic acid as primary ligands and nicotinic acid and ascobic acid as secondary ligands. Rasayan J. Chem. 5, 500–502 (2012)

    CAS  Google Scholar 

  9. Patil, A.B.: pH-metric studies of ternary complexes of some transition metal(II) ions with aspartic acid and glutamic acid as primary ligands and nicotinic acid and ascobic acid as secondary ligands. Rasayan J. Chem. 6, 161–163 (2013)

    CAS  Google Scholar 

  10. Rajhi, A.Y., Ju, Y.-H., Angkawijaya, A.E., Fazary, A.E.: Complex formation equilibria and molecular structure of divalent metal ions-vitamin B3-glycine oligopeptides systems. J. Solution Chem. 42, 2409–2442 (2013)

    CAS  Google Scholar 

  11. Urbanska, J., Podsiadly, H.: Interaction of niacin with copper ions. Polyhedron 60, 130–139 (2013)

    CAS  Google Scholar 

  12. Urdaneta, N., Madden, W., Landaeta, V.R., Rodriguez-Lugo, R., Hernandez, L., Lubes, V.: Formation studies of binary and ternary complexes of copper(II) with an oxazol derivative of nicotinic acid and some amino acids. J. Mol. Liq. 227, 218–222 (2017)

    CAS  Google Scholar 

  13. Xiao, S.X., Gu, H.W., Liu, Y.T., Luo, W., Xiao, F.B., Li, Q.G.: Preparation and thermochemical properties of ternary complexes of rare earth chlorides with nicotinic acid and 8-hydroxylquinoline. J. Chem. Eng. Data 57, 269–273 (2012)

    CAS  Google Scholar 

  14. Xiao, S.X., Li, A.T., Li, C.H., Xiao, H.Y., Xu, X.Y., Gu, H.W., Li, Q.G.: Determination of the standard molar enthalpy of formation of the ternary complex of neodymium with vitamin B3 and 8-hydroxylquinoline by microcalorimetry. J. Therm. Anal. Calorim. 112, 1533–1538 (2013)

    CAS  Google Scholar 

  15. Bhasin, S.K., Prakash, O., Jain, D.S., Gaur, J.N.: Polarographic behavior of the complexes formed by lead(II) and cadmium(II) with nicotinate ions. J. Indian Chem. Soc. 55, 1307–1308 (1978)

    CAS  Google Scholar 

  16. Chiacchierini, E., D’Ascenzo, G., Marino, A., De Angelis, G.: The reaction of chromium(III) with nicotinic and isonicotinic acids. Ann. Chim. (Rome) 67, 547–556 (1978)

    Google Scholar 

  17. Chitale, V.K., Pitre, K.S.: Ternary complexes of lead(II) with itaconic acid and nicotinic acid: a polarographic study. Can. J. Chem. 61, 1941–1943 (1983)

    CAS  Google Scholar 

  18. Di, Y.Y., Gao, W.J., Yang, W.W., Kong, Y.X., Tan, Z.C.: Synthesis, characterization, and thermodynamic study of the coordination compound Cd(HNic)2Cl2(s). J. Chem. Eng. Data 53, 1602–1606 (2008)

    CAS  Google Scholar 

  19. Di, Y.Y., Kong, Y.X., Yang, W.W., Sun, L., Tan, Z.C.: Synthesis, characterization, and thermodynamic study of the solid state coordination compound Ca(Nic)2(s) (Nic = nicotinate). J. Chem. Eng. Data 53, 2777–2782 (2008)

    CAS  Google Scholar 

  20. Jain, A.K., Khan, F.: Thermodynamic stability of Cd(II) complexes with some amino acids and nicotinic acid: a polarographic study. J. Indian Counc. Chem. 12, 42–44 (1996)

    CAS  Google Scholar 

  21. Kondarasaiah, M.H., Ananda, S.: Kinetic and mechanistic study of Ru(III)-nicotinic acid complex formation by oxidation of bromamine-T in acid solution. Oxid. Commun. 27, 140–147 (2004)

    CAS  Google Scholar 

  22. Raditzky, B., Schmeide, K., Sachs, S., Geipel, G., Bernhard, G.: Interaction of uranium(VI) with nitrogen containing model ligands studied by laser-induced fluorescence spectroscopy. Polyhedron 29, 620–626 (2010)

    CAS  Google Scholar 

  23. Sacconi, L.: Metal complexes of the nicotinic acid series. Ann. Chim. (Rome) 40, 386–395 (1950)

    CAS  Google Scholar 

  24. Urbanska, J., Podsiadly, H.: Interaction of niacin with nickel(II) ions. J. Electroanal. Chem. 637, 55–62 (2009)

    CAS  Google Scholar 

  25. Zhong, G., Gu, M., Zhang, Y.: Solid–liquid reaction synthesis and characterization of bioinorganic complexes of nicotinic acid with antimony(III) and bismuth(III) ion. Adv. Mater. Res. 282–283, 267–270 (2011)

    Google Scholar 

  26. Goncalves, E.M., Bernardes, C.E.S., Diogo, H.P., Minas da Piedade, M.E.: Energetics and structure of nicotinic acid (niacin). J. Phys. Chem. B 114, 5475–5485 (2010)

    CAS  PubMed  Google Scholar 

  27. Goncalves, E.M., Joseph, A., Conceicao, A.C.L., Minas da Piedade, M.E.: Potentiometric titration study of the temperature and ionic strength dependence of the acidity constants of nicotinic acid (niacin). J. Chem. Eng. Data 56, 2964–2970 (2011)

    CAS  Google Scholar 

  28. Goncalves, E.M., Rego, T.S., Minas da Piedade, M.E.: Thermochemistry of aqueous pyridine-3-carboxylic acid (nicotinic Acid). J. Chem. Thermodyn. 43, 974–979 (2011)

    CAS  Google Scholar 

  29. Ashton, L.A., Bullock, J.I.: Effect of temperature on the ionisation constants of 2-, 3- and 4-nitrobenzoic, phthalic and nicotinic acids in aqueous solution. J. Chem. Soc. Faraday Trans. 78, 1177–1187 (1982)

    CAS  Google Scholar 

  30. Evans, R.F., Herington, E.F.G., Kynaston, W.: Determination of dissociation constants of the pyridine-monocarboxylic acids by ultra-violet photoelectric spectrophotometry. Trans. Faraday Soc. 49, 1284–1292 (1953)

    CAS  Google Scholar 

  31. Garcia, B., Ibeas, S., Leal, J.M.: Zwitterionic pyridinecarboxylic acids. J. Phys. Org. Chem. 9, 593–597 (1996)

    CAS  Google Scholar 

  32. Kuranova, N.N., Dushina, S.V., Sharnin, V.A.: Solvent effect of aqueous ethanol on complex formation and protolytic equilibria in nicotinic acid solutions. Russ. J. Inorg. Chem. 53, 1943–1947 (2008)

    Google Scholar 

  33. Lumme, P.O.: Ionization and ultraviolet absorption of 2-, 3-, and 4-pyridinecarboxylic acids. Suomen Kem. B30, 168–175 (1957)

    Google Scholar 

  34. Martell, A.E., Smith, R.M., Motekaitis, R.J.: NIST Standard Reference Database 46, vers.8, Gaithersburg (2004)

  35. Niazi, M.S.K., Mollin, J.: Dissociation-constants of some amino-acid and pyridinecarboxylic acids in ethanol–H2O mixtures. Bull. Chem. Soc. Jpn 60, 2605–2610 (1987)

    CAS  Google Scholar 

  36. Orekhova, Z., Ben-Hamo, M., Manzurola, E., Apelblat, A.: Electrical conductance and volumetric studies in aqueous solutions of nicotinic acid. J. Solution Chem. 34, 687–700 (2005)

    CAS  Google Scholar 

  37. Tam, K.Y., Takacs-Novak, K.: Multiwavelength spectrophotometric determination of acid dissociation constants: Part II. First derivative vs. target factor analysis. Pharm. Res. 16, 374–381 (1999)

    CAS  PubMed  Google Scholar 

  38. Tam, K.Y., Takacs-Novak, K.: Multi-wavelength spectrophotometric determination of acid dissociation constants: a validation study. Anal. Chim. Acta 434, 157–167 (2001)

    CAS  Google Scholar 

  39. Thompson, L.C.: Complexes of rare earths 0.8. Picolinic acid. Inorg. Chem. 3, 1319–1321 (1964)

    CAS  Google Scholar 

  40. De Robertis, A., De Stefano, C., Sammartano, S., Rigano, C.: The determination of formation constants of weak complexes by potentiometric measurements: experimental procedures and calculation methods. Talanta 34, 933–938 (1987)

    PubMed  Google Scholar 

  41. Brønsted, J.N.: Calculation of the osmotic and activity functions in solutions of uni-univalent salts. J. Am. Chem. Soc. 44, 938–948 (1922)

    Google Scholar 

  42. Ciavatta, L.: The specific interaction theory in evaluating ionic equilibria. Ann. Chim. (Roma) 70, 551–567 (1980)

    CAS  Google Scholar 

  43. Grenthe, I., Puigdomenech, I.: Modelling in Aquatic Chemistry. OECD, Paris (1997)

    Google Scholar 

  44. Guggenheim, E.A.: The specific thermodynamic properties of aqueous solutions of strong electrolytes. Philos. Mag. 19, 588–643 (1935)

    CAS  Google Scholar 

  45. Guggenheim, E.A., Turgeon, J.C.: Specific interaction of ions. Trans. Faraday Soc. 51, 747–761 (1955)

    CAS  Google Scholar 

  46. Biederman, G.: Ionic media. In: Dahlem Workshop on the Nature of Seawater. Dahlem Konferenzen, Berlin, pp. 339–362 (1975)

  47. Pitzer, K.S.: Thermodynamics of electrolytes. I. Theoretical basis and general equations. J. Phys. Chem. 77, 268–277 (1973)

    CAS  Google Scholar 

  48. Pitzer, K.S. (ed.): Activity Coefficients in Electrolyte Solutions. CRC Press, Boca Raton (1991)

  49. Daniele, P.G., Foti, C., Gianguzza, A., Prenesti, E., Sammartano, S.: Weak alkali and alkaline earth metal complexes of low molecular weight ligands in aqueous solution. Coord. Chem. Rev. 252, 1093–1107 (2008)

    CAS  Google Scholar 

  50. Bretti, C., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamic properties of melamine (2,4,6-triamino-1,3,5-triazine) in aqueous solution. Effect of ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilib. 355, 104–113 (2013)

    CAS  Google Scholar 

  51. Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. 1. CRC Press Inc, Boca Raton (1979)

    Google Scholar 

  52. Pytkowicz, R.M. (ed.): Activity Coefficients in Electrolyte Solutions, vol. 2. CRC Press Inc., Boca Raton (1979)

    Google Scholar 

  53. De Stefano, C., Milea, D., Pettignano, A., Sammartano, S.: Modeling ATP protonation and activity coefficients in NaClaq and KClaq by SIT and Pitzer equations. Biophys. Chem. 121, 121–130 (2006)

    PubMed  Google Scholar 

  54. Crea, F., Giacalone, A., Gianguzza, A., Piazzese, D., Sammartano, S.: Modelling of natural synthetic polyelectrolyte interactions in natural waters by using SIT, Pitzer and ion pairing approaches. Mar. Chem. 99, 93–105 (2006)

    CAS  Google Scholar 

  55. Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)

    CAS  Google Scholar 

  56. Crea, F., Foti, C., De Stefano, C., Sammartano, S.: SIT parameters for 1:2 electrolytes and correlation with Pitzer coefficients. Ann. Chim. (Rome) 97, 85–95 (2007)

    CAS  Google Scholar 

  57. Crea, F., De Stefano, C., Foti, C., Sammartano, S.: SIT parameters for the dependence of (poly)carboxylate activity coefficients on ionic strength in (C2H4)4NIaq (0 < I < 1.2 mol·kg−1) and (CH3)4NClaq (0 < I < 3.9 mol·kg−1) in the temperature range 278 < T < 328 K, and correlation with Pitzer parameters. J. Chem. Eng. Data 52, 2195–2203 (2007)

    CAS  Google Scholar 

  58. Bretti, C., Foti, C., Porcino, N., Sammartano, S.: SIT parameters for 1:1 electrolytes and correlation with Pitzer coefficients. J. Solution Chem. 35, 1401–1415 (2006)

    CAS  Google Scholar 

  59. Crea, F., De Stefano, C., Foti, C., Sammartano, S.: SIT parameters for the dependence of (poly)carboxylate activity coefficients on ionic strength in (C2H5)4NIaq (0 < I < 1.2 mol·kg−1) and (CH3)4NClaq (0 < I < 3.9 mol·kg−1) in the temperature range 278 < T < 328 K, and correlation with Pitzer parameters. J. Chem. Eng. Data 52, 2195–2203 (2007)

    CAS  Google Scholar 

  60. Scatchard, G.: Concentrated solutions of strong electrolytes. Chem. Rev. 19, 309–327 (1936)

    CAS  Google Scholar 

  61. Foti, C., Rigano, C., Sammartano, S.: Analysis of thermodynamic data for complex formation: protonation of THAM and fluoride ion at different temperatures and ionic strengths. Ann. Chim. (Rome) 89, 87–98 (1999)

    CAS  Google Scholar 

  62. De Stefano, C., Sammartano, S., Mineo, P., Rigano, C.: Computer tools for the speciation of natural fluids. In: Gianguzza, A., Pelizzetti, E., Sammartano, S. (eds.) Marine Chemistry—An Environmental Analytical Chemistry Approach, pp. 71–83. Kluwer Academic Publishers, Amsterdam (1997)

    Google Scholar 

  63. Bretti, C., Crea, F., De Stefano, C., Sammartano, S., Vianelli, G.: Some thermodynamic properties of DL-tyrosine and DL-tryptophan. Effect of the ionic medium, ionic strength and temperature on the solubility and acid–base properties. Fluid Phase Equilib. 314, 185–197 (2012)

    CAS  Google Scholar 

  64. Bretti, C., Giuffrè, O., Lando, G., Sammartano, S.: Solubility, protonation and activity coefficients of some aminobenzoic acids in NaClaq and (CH3)4NClaq, at different salt concentrations, at T = 298.15 K. J. Mol. Liq. 212, 825–832 (2015)

    CAS  Google Scholar 

  65. Bretti, C., Giuffrè, O., Lando, G., Sammartano, S.: Modeling solubility and acid–base properties of some amino acids in aqueous NaCl and (CH3)4NCl aqueous solutions at different ionic strengths and temperatures. SpringerPlus 5, 928 (2016)

    PubMed  PubMed Central  Google Scholar 

  66. Bretti, C., De Stefano, C., Lando, G., Majlesi, K., Sammartano, S.: Thermodynamics (solubility and protonation constants) of risedronic acid in different media and temperatures (283.15–318.15 K). J. Solution Chem. 46, 1903–1927 (2017)

    CAS  Google Scholar 

  67. Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Thermodynamics for proton binding of pyridine in different ionic media at different temperatures. J. Chem. Eng. Data 59, 143–156 (2014)

    CAS  Google Scholar 

  68. Berto, S., Daniele, P.G., Lando, G., Prenesti, E., Sammartano, S.: Methodological aspects in the study of alkali metal ion weak complexes using different ISEs electrodes. Int. J. Electrochem. Sci. 7, 10976–10986 (2012)

    CAS  Google Scholar 

  69. Bretti, C., Cigala, R.M., Crea, F., Lando, G., Sammartano, S.: Thermodynamics of proton binding and weak (Cl, Na+ and K+) species formation, and activity coefficients of 1,2-dimethyl-3-hydroxypyridin-4-one (deferiprone). J. Chem. Thermodyn. 77, 98–106 (2014)

    CAS  Google Scholar 

  70. Cigala, R.M., Crea, F., De Stefano, C., Lando, G., Milea, D., Sammartano, S.: Modeling the acid–base properties of glutathione in different ionic media, with particular reference to natural waters and biological fluids. Amino Acids 43, 629–648 (2012)

    CAS  PubMed  Google Scholar 

  71. De Robertis, A., De Stefano, C., Sammartano, S., Gianguzza, A.: Equilibrium studies in natural fluids. A chemical speciation model for the major constituents of seawater. Chem. Spec. Bioavail. 6, 65–84 (1994)

    Google Scholar 

  72. Bretti, C., Cukrowski, I., De Stefano, C., Lando, G.: Solubility, activity coefficients and protonation sequence of risedronic acid. J. Chem. Eng. Data 59, 3728–3740 (2014)

    CAS  Google Scholar 

  73. Crea, F., De Stefano, C., Foti, C., Lando, G., Milea, D., Sammartano, S.: Alkali-metal ion complexes with phosphates, nucleotides, amino acids, and related ligands of biological relevance. Their properties in solution. Met. Ions Life Sci. 16, 133–166 (2016)

    CAS  PubMed  Google Scholar 

  74. Bretti, C., Cigala, R.M., De Stefano, C., Lando, G., Sammartano, S.: Understanding the bioavailability and sequestration of different metal cations in the presence of a biodegradable chelant S,S-EDDS in biological fluids and natural waters. Chemosphere 150, 341–356 (2016)

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by MIUR (Grant PRIN 2015 - 2015MP34H3) for partial funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kavosh Majlesi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majlesi, K., Bretti, C., De Stefano, C. et al. Thermodynamic Study on the Interaction of Nicotinic Acid with H+, Na+, Ca2+ and Mg2+ at Different Temperatures and Ionic Strengths. J Solution Chem 48, 1671–1684 (2019). https://doi.org/10.1007/s10953-019-00915-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00915-w

Keywords

Navigation