Skip to main content
Log in

Experimental and Thermodynamic Modeling of Quaternary Aqueous Two-Phase System of Poly Ethylene Glycol, Sodium Tartrate, Water and Penicillin G

  • Published:
Journal of Solution Chemistry Aims and scope Submit manuscript

Abstract

In present study, the liquid–liquid equilibrium of the quaternary system of polyethylene glycol (PEG) (with molar masses of 1000, 2000, 6000, and 8000 g·mol−1), sodium tartrate salt, Penicillin G and water at 298 K were investigated. The partitioning of Penicillin G between two aqueous phases was also reported. The extended non random two liquid (NRTL) and extended Universal Quasi Chemical (UNIQUAC) models were used to correlate the experimental equilibrium data. The parameters of these activity coefficient models were optimized for the investigated systems. The results show that the polymer molar mass has a dominant effect on the partition coefficient of Penicillin G. Also, results of both thermodynamic models were very satisfactory and satisfactory predicted the equilibrium concentrations of the components in ATPS. Comparison of the absolute average deviation of the two models shows that the extended UNIQUAC model was superior to the extended NRTL model for correlation and interpolation of phase equilibrium data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

n D :

Refractive index

w s :

Mass fraction of the sodium tartrate

w p :

Mass fraction of PEG

Z a :

Charge number of the anion

Z b :

Charge number of the cation

A, b :

Debye–Hückel parameters

I :

Ionic strength of solution

m :

Molality of ion

d :

Density

D :

Dielectric constant

ϕ :

Salt-free volume fraction

v :

Molar volume

n :

Mole number

M w :

Molecular weight

Z :

Coordination number

x :

Mole fraction

ʋ s :

Stoichiometric coefficients of salt

\(\tau_{ij}\) :

Boltzmann factor

T :

Temperature

a ij :

Adjustable binary interaction parameter of ij pair

\(\gamma\) :

Activity coefficient

K :

Partition coefficient

References

  1. Belter, P., Cussler, E., Hu, W.: Bioseparations. Wiley-Interscience, New York (1988)

    Google Scholar 

  2. Mayolo-Deloisa, K., del Refugio Trejo-Hernandez, M., Rito-Palomares, M.: Recovery of laccase from the residual compost of Agaricus bisporus in aqueous two-phase systems. Process Biochem. 44, 435–439 (2009)

    Article  CAS  Google Scholar 

  3. Walter, H.: Partitioning in Aqueous Two–Phase System: Theory, Methods, Uses, and Applications to Biotechnology. Elsevier, Amsterdam (2012)

    Google Scholar 

  4. Albertsson, P., Johansson, G., Tjerneld, F.: Separation processes in biotechnology aqueous two-phase separations. Bioprocess Technol. 9, 287–327 (1990)

    CAS  PubMed  Google Scholar 

  5. de Lemos, L.R., Santos, I.J.B., Rodrigues, G.D., Ferreira, G.M.D., da Silva, L.H.M., da Silva, M.D.C.H., de Carvalho, R.M.M.: Phase compositions of aqueous two-phase systems formed by L35 and salts at different temperatures. J. Chem. Eng. Data. 55, 1193–1199 (2009)

    Article  Google Scholar 

  6. Pei, Y., Wang, J., Wu, K., Xuan, X., Lu, X.: Ionic liquid-based aqueous two-phase extraction of selected proteins. Sep. Purif. Technol. 64, 288–295 (2009)

    Article  CAS  Google Scholar 

  7. Albertsson, P.-Å.: Partition of Cell Particles and Macromolecules: Separation and Purification of Biomolecules, Cell Organelles, Membranes, and Cells in Aqueous Polymer Two-Phase Systems and Their Use in Biochemical Analysis and Biotechnology. Wiley, New York (1986)

    Google Scholar 

  8. Zaslavsky, B.Y.: Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications. CRC Press, Boca Raton (1994)

    Google Scholar 

  9. Asenjo, J.A., Andrews, B.A.: Aqueous two-phase systems for protein separation: a perspective. J. Chromatogr. A 1218, 8826–8835 (2011)

    Article  CAS  Google Scholar 

  10. Silvério, S.C., Ferreira, L.A., Martins, J., Marcos, J.C., Macedo, E., Teixeira, J.: Lysozyme and bovine serum albumin partitioning in polyethylene glycol–phenylalanine conjugate polymer/salt aqueous two-phase systems. Fluid Phase Equilib. 322, 19–25 (2012)

    Article  Google Scholar 

  11. de Barros, D.P., Campos, S.R., Madeira, P.P., Azevedo, A.M., Baptista, A.M., Aires-Barros, M.R.: Modeling the partitioning of amino acids in aqueous two phase systems. J. Chromatogr. A 1329, 52–60 (2014)

    Article  Google Scholar 

  12. Yu, W., Li, K., Liu, Z., Zhang, H., Jin, X.: Novelty aqueous two-phase extraction system based on ionic liquid for determination of sulfonamides in blood coupled with high-performance liquid chromatography. Microchem. J. 136, 263–269 (2018)

    Article  CAS  Google Scholar 

  13. Waziri, S., Abu-Sharkh, B., Ali, S.: The effect of pH and salt concentration on the coexistence curves of aqueous two-phase systems containing a pH responsive copolymer and polyethylene glycol. Fluid Phase Equilib. 205, 275–290 (2003)

    Article  CAS  Google Scholar 

  14. Se, R.A., Aznar, M.: Liquid–liquid equilibrium of the aqueous two-phase system water + PEG 4000 + potassium phosphate at four temperatures: experimental determination and thermodynamic modeling. J. Chem. Eng. Data 47, 1401–1405 (2002)

    Article  CAS  Google Scholar 

  15. Shanbhag, V.P., Axelsson, C.G.: Hydrophobic interaction determined by partition in aqueous two-phase systems. Eur. J. Biochem. 60, 17–22 (1975)

    Article  CAS  Google Scholar 

  16. Sadeghi, R.: Aqueous two-phase systems of poly(vinylpyrrolidone) and potassium citrate at different temperatures—experimental results and modeling of liquid–liquid equilibrium data. Fluid Phase Equilib. 246, 89–95 (2006)

    Article  CAS  Google Scholar 

  17. Li, M., Zhu, Z.-Q., Wu, Y.-T., Lin, D.-Q.: Measurement of phase diagrams for new aqueous two-phase systems and prediction by a generalized multicomponent osmotic virial equation. Chem. Eng. Sci. 53, 2755–2767 (1998)

    Article  CAS  Google Scholar 

  18. Yang, X., Lu, Y., Sun, Z., Cui, K., Tan, Z.: Measurement and correlation of phase equilibria in aqueous two-phase systems containing polyoxyethylene cetyl ether and three organic salts at different temperatures. J. Chem. Eng. Data 63, 625–634 (2018)

    Article  CAS  Google Scholar 

  19. Khayati, G.: Optimization of propionic acid extraction by aqueous two-phase system using response surface methodology. Chem. Eng. Commun. 200, 667–677 (2013)

    Article  CAS  Google Scholar 

  20. Lee, S.C., Ahn, B.S., Kim, J.G.: Reaction equilibrium of penicillin G with amberlite LA-2 in a nonpolar organic solvent. Biotechnol. Prog. 18, 108–115 (2002)

    Article  CAS  Google Scholar 

  21. Yang, C., Cussler, E.: Reactive extraction of penicillin G in hollow-fiber and hollow-fiber fabric modules. Biotechnol. Bioeng. 69, 66–73 (2000)

    Article  CAS  Google Scholar 

  22. Najafpour, G.: Biochemical Engineering and Biotechnology. Elsevier, Amsterdam (2015)

    Google Scholar 

  23. Liu, Q., Yu, J., Li, W., Hu, X., Xia, H., Liu, H., Yang, P.: Partitioning behavior of penicillin G in aqueous two phase system formed by ionic liquids and phosphate. Sep. Sci. Technol. 41, 2849–2858 (2006)

    Article  CAS  Google Scholar 

  24. Pazuki, G., Vossoughi, M., Taghikhani, V.: Partitioning of penicillin G acylase in aqueous two-phase systems of poly(ethylene glycol) 20000 or 35000 and potassium dihydrogen phosphate or sodium citrate. J. Chem. Eng. Data. 55, 243–248 (2009)

    Article  Google Scholar 

  25. Pazuki, G., Taghikhani, V., Vossoughi, M.: Modeling of aqueous biomolecules using a new free-volume group contribution model. Ind. Eng. Chem. Res. 48, 4109–4118 (2009)

    Article  CAS  Google Scholar 

  26. Perez, B., Malpiedi, L.P., Tubío, G., Nerli, B., de Alcântara Pessôa Filho, P.: Experimental determination and thermodynamic modeling of phase equilibrium and protein partitioning in aqueous two-phase systems containing biodegradable salts. J. Chem. Thermodyn. 56, 136–143 (2013)

    Article  CAS  Google Scholar 

  27. Mobalegholeslam, P., Bakhshi, H.: A new model of excess Gibbs energy for systems containing polymer–salt–water applicable to aqueous two phase systems. J. Solution Chem. 45, 1826–1841 (2016)

    Article  CAS  Google Scholar 

  28. Bakhshi, H., Mobalegholeslam, P.: Phase equilibria calculations of electrolyte solutions containing water–polymer–salt using a new thermodynamic model, applicable in aqueous two phase systems. Fluid Phase Equilib. 434, 222–232 (2017)

    Article  CAS  Google Scholar 

  29. Boukhalfa, N., Méniai, A.-H.: Assessment of a thermodynamic model for aqueous electrolyte systems. Int. J. Hydrog. Energy. 43, 5358–5364 (2018)

    Article  CAS  Google Scholar 

  30. Durán, A., Claros, M., Jimenez, Y.P.: Molybdate ion partition in the aqueous two-phase system formed by CuSO4 + PEG 4000 + H2O at different pH and temperatures J. Mol. Liq. 249, 562–572 (2018)

    Article  Google Scholar 

  31. Hamta, A., Mohammadi, A., Dehghani, M.R., Feyzi, F.: Liquid–liquid equilibrium and thermodynamic modeling of aqueous two-phase system containing polypropylene glycol and NaClO4 at T = (288.15 and 298.15) K. J. Solution Chem. 47, 1–25 (2018)

    Article  CAS  Google Scholar 

  32. Lv, H., Zheng, Y.: A newly developed tridimensional neural network for prediction of the phase equilibria of six aqueous two-phase systems. J. Ind. Eng. Chem. 57, 377–386 (2018)

    Article  CAS  Google Scholar 

  33. Pirdashti, M., Movagharnejad, K., Rostami, A.A., Bakhshi, H., Mobalegholeslam, P.: Liquid–liquid equilibria, electrical conductivity, and refractive indices of poly(ethylene glycol) + sodium sulfate + guanidine hydrochloride aqueous two-phase systems: correlation and thermodynamic modeling. Fluid Phase Equilib. 417, 29–40 (2016)

    Article  CAS  Google Scholar 

  34. Rabieenezhad, A., Roosta, A.: Experimental study and shermodynamic modelling of penicillin-G extraction using PEG 6000 and K2HPO4 aqueous two-phase system. J. Chem. Thermodyn. 120, 54–59 (2018)

    Article  CAS  Google Scholar 

  35. Wu, Y.T., Lin, D.Q., Zhu, Z.Q.: Thermodynamics of aqueous two-phase systems—the effect of polymer molecular weight on liquid–liquid equilibrium phase diagrams by the modified NRTL model. Fluid Phase Equilib. 147, 25–43 (1998)

    Article  CAS  Google Scholar 

  36. Zafarani-Moattar, M.T., Sadeghi, R., Hamidi, A.A.: Liquid–liquid equilibria of an aqueous two-phase system containing polyethylene glycol and sodium citrate: experiment and correlation. Fluid Phase Equilib. 219, 149–155 (2004)

    Article  CAS  Google Scholar 

  37. Prausnitz, J.M., Lichtenthaler, R.N., de Azevedo, E.G.: Molecular Thermodynamics of Fluid-Phase Equilibria. Pearson Education, London (1998)

    Google Scholar 

  38. Poling, B.E., Prausnitz, J.M., Connell, J.P.: The Properties of Gases and Liquids. Mcgraw-Hill, New York (2001)

    Google Scholar 

  39. Cheng, H., Stenby, E.H., Kontogeorgis, G.: Thermodynamic Modelling of Surfactant Solutions. Technical University of Danmarks Tekniske Universitet, Department of Applied Chemistry, Institut for Anvendt Kemi, Lyngby (2003)

    Google Scholar 

  40. Rito-Palomares, M., Nunez, L., Amador, D.: Practical application of aqueous two-phase systems for the development of a prototype process for c-phycocyanin recovery from Spirulina maxima. J. Chem. Technol. Biotechnol. 76, 1273–1280 (2001)

    Article  CAS  Google Scholar 

  41. Roosta, A., Jafari, F., Javanmardi, J.: Liquid–liquid equilibrium in an aqueous two-phase system of polyethylene glycol 6000, sodium sulfate, water, glucose, and penicillin-G: experimental and thermodynamic modeling. J. Chem. Eng. Data 61, 565–570 (2015)

    Article  Google Scholar 

  42. Zafarani-Moattar, M.T., Hamzehzadeh, S., Hosseinzadeh, S.: Phase diagrams for liquid–liquid equilibrium of ternary poly(ethylene glycol) + di-sodium tartrate aqueous system and vapor–liquid equilibrium of constituting binary aqueous systems at T = (298.15, 308.15, and 318.15) K: experiment and correlation. Fluid Phase Equilib. 268, 142–152 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors acknowledge the funding support of Babol Noshirvani University of Technology for this study, through Grant Program No. BNUT/390058/96.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Bakhshi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Edrisi, S., Bakhshi, H. & Rahimnejad, M. Experimental and Thermodynamic Modeling of Quaternary Aqueous Two-Phase System of Poly Ethylene Glycol, Sodium Tartrate, Water and Penicillin G. J Solution Chem 48, 1206–1221 (2019). https://doi.org/10.1007/s10953-019-00906-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10953-019-00906-x

Keywords

Navigation